Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

Overview

NIRPS-ETC

Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

February 2022 - Before NIRPS on sky

Original NIRPS ETC code by Bruno L. Canto Martins 2018-2019

Additional edits by Nolan Grieves (University of Geneva) 2020-2022

Overview

  • The NIRPS ETC uses spectra from the NASA Infrared Telescope Facility (IRTF) as SEDs to get estimated flux values for different spectral types: http://irtfweb.ifa.hawaii.edu/~spex/IRTF_Spectral_Library/
  • The ETC calculates efficiency at different wavelengths using seeing, atmospheric efficiency from TAPAS (http://cds-espri.ipsl.fr/tapas/), and the measured global efficiency of the instrument
  • The signal to noise ratio (SNR) at each pixel or bin is calculated from the fiber diameter, sampling, readout noise, resolution, efficiency, and flux in the pixel or bin from the IRTF template (flux=(10.**(0.4*(Ho-H)))*flux_st)
  • RV precisions are calculated using, dRV=c/(Q*sqrt(Ne-)), equation 12 of Bouchy et al. (2001: https://ui.adsabs.harvard.edu/abs/2001A%26A...374..733B/abstract). The quality factors Q for spectra are calculated with ENIRIC from Phoenix simulated spectra or from spectral templates from the Spirou spectrograph
    • -> see: NIRPS-ETC/intermediate_preparation/update_RV_estimates/README_update_RV_estimates

Use

$ python NIRPS_ETC.py

  • change observing options within the code at the top
    • Observation Mode (HA/HE)
    • Seeing, in arcsec (range 0.7-1.2)
    • Airmass (range 1.0-2.0)
    • Object magnitude (H band)
    • Exposure time (in sec)
    • Spectral type (F0V/F5V/G0V/G5V/G8V/K0V/K3V/K7V/M0V/M1V/M2V/M3V/M4V/M5V/M6V/M7V/M8V/M9V/L1V/L2V/L3V/L4V/L5V/L6V/L8V/T2V)
    • bandpass ('CFHT' or 'Eniric') #YJH bandpasses that will affect the range of the spectra used to calculate RV precision
  • outputs mean SNR, in YJH, and each order, and RV precisisons for certain spectral types

OR use script version:

$ python NIRPS_ETC_script.py

  • change inputs for each target in a space separated text file with columns:
    • target st obs_mode seeing airmass H t_exp bandpass
  • change input and output text files within code to desired option
  • outputs to file the mean SNR, YJH SNRs, and RV precisions

Contents

  • inputs/
    • NIRPS_STAR_templates.txt
      • SEDs from IRTF (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_effs.txt
      • global efficiency of instrument (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_tapas.txt
      • atmospheric efficiency from TAPAS (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_wave_range.txt
      • wavelength range of echelle orders (update with intermediate_preparation/update_effs/update_effs.py)
    • phoenix_Q_conversions_CFHT-bandpass.txt
      • Q factor conversions for different resolutions in CFHT defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/phoenix_qfactor_resolution_conversion.py)
    • phoenix_Q_conversions_eniric-bandpass.txt
      • Q factor conversions for different resolutions in Eniric defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/phoenix_qfactor_resolution_conversion.py)
    • phoenix_eniric_Qfactors_CFHT-bandpass.csv
      • Q factors from Eniric in CFHT defined YJH bandpasses (update with eniric using command in intermediate_preparation/update_RV_estimates/README_update_RV_estimates)
    • phoenix_eniric_Qfactors_eniric-bandpass.csv
      • Q factors from Eniric in Eniric defined YJH bandpasses (update with eniric using command in intermediate_preparation/update_RV_estimates/README_update_RV_estimates)
    • spirou_fit_Qvalues_CFHT-bandpass.txt
      • Q factors from Spirou templates in CFHT defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/fit_spirou_qfactors.py)
    • spirou_fit_Qvalues_eniric-bandpass.txt.
      • Q factors from Spirou templates in Eniric defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/fit_spirou_qfactors.py)
  • intermediate_preparation/
    • ETC_v3.0_CantoMartins/
      • original ETC by Bruno Canto Martins
    • add_stellar_templates/
      • add and update stellar templates
    • update_RV_estimates/
      • update RV estimates and Q values
    • update_effs/
      • update efficiency files and resample wavelength grid for tapas, effs, and star_templates
  • outputs/
    • outputs SNR for each order and wavelength vs SNR plot from NIRPS_ETC.py
  • NIRPS_ETC.py
    • main ETC code for a single star
  • NIRPS_ETC_script.py
    • script that runs ETC for stars in etc_targets_input.txt and outputs to etc_targets_output.txt
  • etc_targets_input.txt
    • example input file for NIRPS_ETC_script.py
  • etc_targets_output.txt
    • example ouput file for NIRPS_ETC_script.py
  • nirps_etc_lib.py
    • definitions for fucntions in ETC code
Owner
Nolan Grieves
Postdoctoral Research Scientist [email protected]
Nolan Grieves
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
JugLab 33 Dec 30, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022