CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

Overview

CALVIN

CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete, Wolfram Burgard

We present CALVIN (Composing Actions from Language and Vision), an open-source simulated benchmark to learn long-horizon language-conditioned tasks. Our aim is to make it possible to develop agents that can solve many robotic manipulation tasks over a long horizon, from onboard sensors, and specified only via human language. CALVIN tasks are more complex in terms of sequence length, action space, and language than existing vision-and-language task datasets and supports flexible specification of sensor suites.

๐Ÿ’ป Quick Start

To begin, clone this repository locally

git clone --recurse-submodules https://github.com/mees/calvin.git
$ export CALVIN_ROOT=$(pwd)/calvin

Install requirements:

$ cd $CALVIN_ROOT
$ virtualenv -p $(which python3) --system-site-packages calvin_env # or use conda
$ source calvin_env/bin/activate
$ sh install.sh

Download dataset (choose which split you want to download with the argument D, ABC or ABCD):

$ cd $CALVIN_ROOT/dataset
$ sh download_data.sh D | ABC | ABCD

๐Ÿ‹๏ธโ€โ™‚๏ธ Train Baseline Agent

Train baseline models:

$ cd $CALVIN_ROOT/calvin_models/calvin_agent
$ python training.py

You want to scale your training to a multi-gpu setup? Just specify the number of GPUs and DDP will automatically be used for training thanks to Pytorch Lightning. To train on all available GPUs:

$ python training.py trainer.gpus=-1

If you have access to a Slurm cluster, we also provide trainings scripts here.

You can use Hydra's flexible overriding system for changing hyperparameters. For example, to train a model with rgb images from both static camera and the gripper camera:

$ python training.py datamodule/observation_space=lang_rgb_static_gripper model/perceptual_encoder=gripper_cam

To train a model with RGB-D from both cameras:

$ python training.py datamodule/observation_space=lang_rgbd_both model/perceptual_encoder=RGBD_both

To train a model with rgb images from the static camera and visual tactile observations:

$ python training.py datamodule/observation_space=lang_rgb_static_tactile model/perceptual_encoder=static_RGB_tactile

To see all available hyperparameters:

$ python training.py --help

To resume a training, just override the hydra working directory :

$ python training.py hydra.run.dir=runs/my_dir

๐Ÿ–ผ๏ธ Sensory Observations

CALVIN supports a range of sensors commonly utilized for visuomotor control:

  1. Static camera RGB images - with shape 200x200x3.
  2. Static camera Depth maps - with shape 200x200x1.
  3. Gripper camera RGB images - with shape 200x200x3.
  4. Gripper camera Depth maps - with shape 200x200x1.
  5. Tactile image - with shape 120x160x2x3.
  6. Proprioceptive state - EE position (3), EE orientation in euler angles (3), gripper width (1), joint positions (7), gripper action (1).

๐Ÿ•น๏ธ Action Space

In CALVIN, the agent must perform closed-loop continuous control to follow unconstrained language instructions characterizing complex robot manipulation tasks, sending continuous actions to the robot at 30hz. In order to give researchers and practitioners the freedom to experiment with different action spaces, CALVIN supports the following actions spaces:

  1. Absolute cartesian pose - EE position (3), EE orientation in euler angles (3), gripper action (1).
  2. Relative cartesian displacement - EE position (3), EE orientation in euler angles (3), gripper action (1).
  3. Joint action - Joint positions (7), gripper action (1).

๐Ÿ’ช Evaluation: The Calvin Challenge

Long-horizon Multi-task Language Control (LH-MTLC)

The aim of the CALVIN benchmark is to evaluate the learning of long-horizon language-conditioned continuous control policies. In this setting, a single agent must solve complex manipulation tasks by understanding a series of unconstrained language expressions in a row, e.g., โ€œopen the drawer. . . pick up the blue block. . . now push the block into the drawer. . . now open the sliding doorโ€. We provide an evaluation protocol with evaluation modes of varying difficulty by choosing different combinations of sensor suites and amounts of training environments. To avoid a biased initial position, the robot is reset to a neutral position before every multi-step sequence.

To evaluate a trained calvin baseline agent, run the following command:

$ cd $CALVIN_ROOT/calvin_models/calvin_agent
$ python evaluation/evaluate_policy.py --dataset_path <PATH/TO/DATASET> --train_folder <PATH/TO/TRAINING/FOLDER>

Optional arguments:

  • --checkpoint <PATH/TO/CHECKPOINT>: by default, the evaluation loads the last checkpoint in the training log directory. You can instead specify the path to another checkpoint by adding this to the evaluation command.
  • --debug: print debug information and visualize environment.

If you want to evaluate your own model architecture on the CALVIN challenge, you can implement the CustomModel class in evaluate_policy.py as an interface to your agent. You need to implement the following methods:

  • __init__(): gets called once at the beginning of the evaluation.
  • reset(): gets called at the beginning of each evaluation sequence.
  • step(obs, goal): gets called every step and returns the predicted action.

Then evaluate the model by running:

$ python evaluation/evaluate_policy.py --dataset_path <PATH/TO/DATASET> --custom_model

You are also free to use your own language model instead of using the precomputed language embeddings provided by CALVIN. For this, implement CustomLangEmbeddings in evaluate_policy.py and add --custom_lang_embeddings to the evaluation command.

Multi-task Language Control (MTLC)

Alternatively, you can evaluate the policy on single tasks and without resetting the robot to a neutral position. Note that this evaluation is currently only available for our baseline agent.

$ python evaluation/evaluate_policy_singlestep.py --dataset_path <PATH/TO/DATASET> --train_folder <PATH/TO/TRAINING/FOLDER> [--checkpoint <PATH/TO/CHECKPOINT>] [--debug]

Pre-trained Model

Download the MCIL model checkpoint trained on the static camera rgb images on environment D.

$ wget http://calvin.cs.uni-freiburg.de/model_weights/D_D_static_rgb_baseline.zip
$ unzip D_D_static_rgb_baseline.zip

๐Ÿ’ฌ Relabeling Raw Language Annotations

You want to try learning language conditioned policies in CALVIN with a new awesome language model?

We provide an example script to relabel the annotations with different language model provided in SBert, such as the larger MPNet (paraphrase-mpnet-base-v2) or its corresponding multilingual model (paraphrase-multilingual-mpnet-base-v2). The supported options are "mini", "mpnet" and "multi". If you want to try different SBert models, just change the model name here.

cd $CALVIN_ROOT/calvin_models/calvin_agent
python utils/relabel_with_new_lang_model.py +path=$CALVIN_ROOT/dataset/task_D_D/ +name_folder=new_lang_model_folder model.nlp_model=mpnet

If you additionally want to sample different language annotations for each sequence (from the same task annotations) in the training split run the same command with the parameter reannotate=true.

๐Ÿ“ˆ SOTA Models

Open-source models that outperform the MCIL baselines from CALVIN:

Contact Oier to add your model here.

Reinforcement Learning with CALVIN

Are you interested in trying reinforcement learning agents for the different manipulation tasks in the CALVIN environment? We provide a google colab to showcase how to leverage the CALVIN task indicators to learn RL agents with a sparse reward.

Citation

If you find the dataset or code useful, please cite:

@article{calvin21,
author = {Oier Mees and Lukas Hermann and Erick Rosete-Beas and Wolfram Burgard},
title = {CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks},
journal={arXiv preprint arXiv:2112.03227},
year = 2021,
}

License

MIT License

Owner
Oier Mees
PhD Student at the University of Freiburg, Germany. Researcher in Machine Learning and Robotics.
Oier Mees
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
NAVER BoostCamp Final Project

CV 14์กฐ final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur ์‹คํ–‰ ๋ฐฉ๋ฒ• streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Akshat Surolia 2 May 11, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022