ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

Overview

PENet: Precise and Efficient Depth Completion

This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Efficient Image Guided Depth Completion", developed by Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiaojin Gong at Zhejiang University and Huawei Shanghai.

Create a new issue for any code-related questions. Feel free to direct me as well at [email protected] for any paper-related questions.

Results

  • The proposed full model ranks 1st in the KITTI depth completion online leaderboard at the time of submission.
  • It infers much faster than most of the top ranked methods.
  • Both ENet and PENet can be trained thoroughly on 2x11G GPU.
  • Our network is trained with the KITTI dataset alone, not pretrained on Cityscapes or other similar driving dataset (either synthetic or real).

Method

A Strong Two-branch Backbone

Revisiting the popular two-branch architecture

The two-branch backbone is designed to thoroughly exploit color-dominant and depth-dominant information from their respective branches and make the fusion of two modalities effective. Note that it is the depth prediction result obtained from the color-dominant branch that is input to the depth-dominant branch, not a guidance map like those in DeepLiDAR and FusionNet.

Geometric convolutional Layer

To encode 3D geometric information, it simply augments a conventional convolutional layer via concatenating a 3D position map to the layer’s input.

Dilated and Accelerated CSPN++

Dilated CSPN

we introduce a dilation strategy similar to the well known dilated convolutions to enlarge the propagation neighborhoods.

Accelerated CSPN

we design an implementation that makes the propagation from each neighbor truly parallel, which greatly accelerates the propagation procedure.

Contents

  1. Dependency
  2. Data
  3. Trained Models
  4. Commands
  5. Citation

Dependency

Our released implementation is tested on.

  • Ubuntu 16.04
  • Python 3.7.4 (Anaconda 2019.10)
  • PyTorch 1.3.1 / torchvision 0.4.2
  • NVIDIA CUDA 10.0.130
  • 4x NVIDIA GTX 2080 Ti GPUs
pip install numpy matplotlib Pillow
pip install scikit-image
pip install opencv-contrib-python==3.4.2.17

Data

  • Download the KITTI Depth Dataset and KITTI Raw Dataset from their websites. The overall data directory is structured as follows:
├── kitti_depth
|   ├── depth
|   |   ├──data_depth_annotated
|   |   |  ├── train
|   |   |  ├── val
|   |   ├── data_depth_velodyne
|   |   |  ├── train
|   |   |  ├── val
|   |   ├── data_depth_selection
|   |   |  ├── test_depth_completion_anonymous
|   |   |  |── test_depth_prediction_anonymous
|   |   |  ├── val_selection_cropped
├── kitti_raw
|   ├── 2011_09_26
|   ├── 2011_09_28
|   ├── 2011_09_29
|   ├── 2011_09_30
|   ├── 2011_10_03

Trained Models

Download our pre-trained models:

Commands

A complete list of training options is available with

python main.py -h

Training

Training Pipeline

Here we adopt a multi-stage training strategy to train the backbone, DA-CSPN++, and the full model progressively. However, end-to-end training is feasible as well.

  1. Train ENet (Part Ⅰ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 6 -n e
# -b for batch size
# -n for network model
  1. Train DA-CSPN++ (Part Ⅱ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 6 -f -n pe --resume [enet-checkpoint-path]
# -f for freezing the parameters in the backbone
# --resume for initializing the parameters from the checkpoint
  1. Train PENet (Part Ⅲ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 10 -n pe -he 160 -w 576 --resume [penet-checkpoint-path]
# -he, -w for the image size after random cropping

Evalution

CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n p --evaluate [enet-checkpoint-path]
CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n pe --evaluate [penet-checkpoint-path]
# test the trained model on the val_selection_cropped data

Test

CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n pe --evaluate [penet-checkpoint-path] --test
# generate and save results of the trained model on the test_depth_completion_anonymous data

Citation

If you use our code or method in your work, please cite the following:

@article{hu2020PENet,
	title={Towards Precise and Efficient Image Guided Depth Completion},
	author={Hu, Mu and Wang, Shuling and Li, Bin and Ning, Shiyu and Fan, Li and Gong, Xiaojin},
	booktitle={ICRA},
	year={2021}
}

Related Repositories

The original code framework is rendered from "Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera". It is developed by Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman at MIT.

The part of CoordConv is rendered from "An intriguing failing of convolutional neural networks and the CoordConv".

StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022