Experiments for Neural Flows paper

Overview

Neural Flows: Efficient Alternative to Neural ODEs [arxiv]

TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster and achieves better results on time series applications, since it avoids using expensive numerical solvers.

image

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, Stephan Günnemann

Abstract: Neural ordinary differential equations describe how values change in time. This is the reason why they gained importance in modeling sequential data, especially when the observations are made at irregular intervals. In this paper we propose an alternative by directly modeling the solution curves - the flow of an ODE - with a neural network. This immediately eliminates the need for expensive numerical solvers while still maintaining the modeling capability of neural ODEs. We propose several flow architectures suitable for different applications by establishing precise conditions on when a function defines a valid flow. Apart from computational efficiency, we also provide empirical evidence of favorable generalization performance via applications in time series modeling, forecasting, and density estimation.

This repository acts as a supplementary material which implements the models and experiments as described in the main paper. The definition of models relies on the stribor package for normalizing and neural flows. The baselines use torchdiffeq package for differentiable ODE solvers.

Installation

Install the local package nfe (which will also install all the dependencies):

pip install -e .

Download data

Download and preprocess real-world data and generate synthetic data (or run commands in download_all.sh manually):

. scripts/download_all.sh

Many experiments will automatically download data if it's not already downloaded so this step is optional.

Note: MIMIC-III and IV have to be downloaded manually. Use notebooks in data_preproc to preprocess data.

After downloading everything, your directory tree should look like this:

├── nfe
│   ├── experiments
│   │   ├── base_experiment.py
│   │   ├── data
│   │   │   ├── activity
│   │   │   ├── hopper
│   │   │   ├── mimic3
│   │   │   ├── mimic4
│   │   │   ├── physionet
│   │   │   ├── stpp
│   │   │   ├── synth
│   │   │   └── tpp
│   │   ├── gru_ode_bayes
│   │   ├── latent_ode
│   │   ├── stpp
│   │   ├── synthetic
│   │   └── tpp
│   ├── models
│   └── train.py
├── scripts
│   ├── download_all.sh
│   └── run_all.sh
└── setup.py

Models

Models are located in nfe/models. It contains the implementation of CouplingFlow and ResNetFlow. The ODE models and continuous (ODE or flow-based) GRU and LSTM layers can be found in the same directory.

Example: Coupling flow

import torch
from nfe import CouplingFlow

dim = 4
model = CouplingFlow(
    dim,
    n_layers=2, # Number of flow layers
    hidden_dims=[32, 32], # Hidden layers in single flow
    time_net='TimeLinear', # Time embedding network
)

t = torch.rand(3, 10, 1) # Time points at which IVP is evaluated
x0 = torch.randn(3, 1, dim) # Initial conditions at t=0

xt = model(x0, t) # IVP solutions at t given x0
xt.shape # torch.Size([3, 10, 4])

Example: GRU flow

import torch
from nfe import GRUFlow

dim = 4
model = GRUFlow(
    dim,
    n_layers=2, # Number of flow layers
    hidden_dims=[32, 32], # Hidden layers in single flow
    time_net='TimeTanh', # Time embedding network
)

t = torch.rand(3, 10, 1) # Time points at which IVP is evaluated
x = torch.randn(3, 10, dim) # Initial conditions, RNN inputs

xt = model(x, t) # IVP solutions at t_i given x_{1:i}
xt.shape # torch.Size([3, 10, 4])

Experiments

Run all experiments: . scripts/run_all.sh. Or run individual commands manually.

Synthetic

Example:

python -m nfe.train --experiment synthetic --data [ellipse|sawtooth|sink|square|triangle] --model [ode|flow] --flow-model [coupling|resnet] --solver [rk4|dopri5]

Smoothing

Example:

python -m nfe.train --experiment latent_ode --data [activity|hopper|physionet] --classify [0|1] --model [ode|flow] --flow-model [coupling|resnet]

Reference:

  • Yulia Rubanova, Ricky Chen, David Duvenaud. "Latent ODEs for Irregularly-Sampled Time Series" (2019) [paper]. We adapted the code from here.

Filtering

Request MIMIC-III and IV data, and download locally. Use notebooks to preprocess data.

Example:

python -m nfe.train --experiment gru_ode_bayes --data [mimic3|mimic4] --model [ode|flow] --odenet gru --flow-model [gru|resnet]

Reference:

  • Edward De Brouwer, Jaak Simm, Adam Arany, Yves Moreau. "GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series" (2019) [paper]. We adapted the code from here.

Temporal point process

Example:

python -m nfe.train --experiment tpp --data [poisson|renewal|hawkes1|hawkes2|mooc|reddit|wiki] --model [rnn|ode|flow] --flow-model [coupling|resnet] --decoder [continuous|mixture] --rnn [gru|lstm] --marks [0|1]

Reference:

  • Junteng Jia, Austin R. Benson. "Neural Jump Stochastic Differential Equations" (2019) [paper]. We adapted the code from here.

Spatio-temporal

Example:

python -m nfe.train --experiment stpp --data [bike|covid|earthquake] --model [ode|flow] --density-model [independent|attention]

Reference:

  • Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel. "Neural Spatio-Temporal Point Processes" (2021) [paper]. We adapted the code from here.

Citation

@article{bilos2021neuralflows,
  title={{N}eural Flows: {E}fficient Alternative to Neural {ODE}s},
  author={Bilo{\v{s}}, Marin and Sommer, Johanna and Rangapuram, Syama Sundar and Januschowski, Tim and G{\"u}nnemann, Stephan},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022