Semi-Automated Data Processing

Overview

Semi-Automated Data Processing

Preparing data for model learning is one of the most important steps in any project—and traditionally, one of the most time consuming. Data Analysis plays a very important role in the entire Data Science Workflow. In fact, this takes most of the time of the Data science Workflow. There’s a nice quote (not sure who said it)According to Wikipedia, In statistics, exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling or hypothesis testing task. Exploratory data analysis was promoted by John Tukey to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.**“In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.”*

This projects handles the task with minimal user interaction by analyzing your data and identifying fixes, screening out fields that are problematic or not likely to be useful, deriving new attributes when appropriate, and improving performance through intelligent screening techniques. You can use the project in semi-interactive fashion, previewing the changes before they are made and accept or reject them as you want.

This project cover the 3 steps in any project workflow, comes before the model training:
1) Exploratory data analysis
2) Feature engineering
3) Feature selection


All these steps has to be carried out by the user by calling the several functions as follows:

1) identify_feature(data)=
This function identifies the categorical, continuous numerical and discrete numerical features in the datset. It also identifies datetime feature and extracts the relevant info from it.

Input:
data=Dataset

Output:
df=Dataset
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values

2) plot_nan_feature(data, continuous_features, discrete_features, categorical_features,dependent_var)=
It identifies the missing values in the dataset and visualize them their impact on dependent feature.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
categorical_features=List of features names associated containing categorical values
dependent_var= Dependent feature name in string format

Output:
df= Dataset
nan_features= List of feature names containing NaN values

3) visualize_imputation_impact(data,continuous_features, discrete_features, categorical_features,nan_features,dependent_var):
The function visualizes the impact of different NaN value impution on the distribution of values the feature.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
categorical_features=List of features names associated containing categorical values
nan_features= List of feature names containing NaN values
dependent_var= Dependent feature name in string format

Output:
None

4) nan_imputation(data,mean_feature,median_feature,mode_feature,random_feature,new_category):
The function imputes the NaN values in the feature as per the user input.

Input:
data=Dataset
mean_feature= List of feature names in which we have to carry out mean_imputation
median_feature=List of feature names in which we have to carry out median_imputation
mode_feature=List of feature names in which we have to carry out mode_imputation
random_feature=List of feature names in which we have to carry out random_imputation
new_category=List of feature names in which we we create a new category for the NaN values

Output:
None

5) cross_visualization(data,continuous_features,discrete_features, categorical_features,dt_features):
The function visualise the relationship between the different independent features.

Input:
df=Dataset
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values

Output:
continuous_features2=List of features names associated containing continuous numerical values, except the dependent feature

6) dependent_independent_visualization(data,continuous_features,discrete_features, categorical_features,dt_features,dependent_feature):
The function visualise the relationship between the different independent features.

Input:
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values
dependent_var= Dependent feature name in string format

Output:
None

7) outlier_removal(data,continuous_features,discrete_features,dependent_var,dependent_var_type,action):
The function visualizes the outlliers using the boxplot and removes them.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
dependent_var= Dependent feature name in string format
dependent_var_type= Contain string tells if the problem is regression (than use 'Regression') or else
action= Give input as 'remove' to delete the rows associated with the outliers

Output:
df=Dataset

8) transformation_visualization(data,continuous_features,discrete_features,dependent_feature):
The function visualize the feature after performing various transormation techniques.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
dependent_feature= Dependent feature name in string format

Output:
None

9) feature_transformation(train_data,continuous_features,discrete_features,transformation,dependent_feature):
The function performing the feature transormation technique as per the user input.

Input:
train_data=Training dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
transformation=Type of transformation: none=No transformation, log=Log Transformation, sqrt= Square root Transformation, reciprocal= Reciprocal Transformation, exp= Exponential Transformation, boxcox=Boxcox Transformation
dependent_feature= Dependent feature name in string format

Output:
X_data=Training dataset

10) categorical_transformation(train_data,categorical_encoding):
This function transforms the categorical featres in the numerical ones using encoding techniques.

Input:
train_data=Training dataset
categorical_encoding={'one_hot_encoding':[],'frequency_encoding':[],'mean_encoding':[],'target_guided_ordinal_encoding':{}}

Output:
X_data=Training dataset

11a) feature_selection(Xtrain,ytrain, threshold, data_type, filter_type):
This function performs the feature selection based on the dependent and independent features in train dataset.

Input:
Xtrain=Training dataset
ytrain=dependent data in training dataset
threshold= Threshold for the correlation
{'in_num_out_num':{'linear':['pearson'],'non-linear':['spearman']},
'in_num_out_cat':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_num':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_cat':{'chi_square_test':True,'mutual_info':True},}
data_type= Data linear or non-linearly dependent on the output label
filter_type= If input data is numerical and output is numerical then --'in_num_out_num' as shown in the above dictionary

Output:
Xtrain= Training dataset
feature_df= Dataframe containig features with their pvalue

11b) feature_selection(Xtrain,ytrain,Xtest,ytest, threshold, data_type, filter_type):
This function performs the feature selection based on the dependent and independent features in train dataset.

Input:
Xtrain=Training dataset
ytrain=dependent data in training dataset
Xtest=Test dataset
ytest=dependent data in test dataset
threshold= Threshold for the correlation
{'in_num_out_num':{'linear':['pearson'],'non-linear':['spearman']},
'in_num_out_cat':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_num':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_cat':{'chi_square_test':True,'mutual_info':True},}
data_type= Data linear or non-linearly dependent on the output label
filter_type= If input data is numerical and output is numerical then --'in_num_out_num' as shown in the above dictionary

Output:
Xtrain= Training dataset
Xtest= Test dataset
feature_df= Dataframe containig features with their pvalue

12) convert_dtype(data,categorical_features):
This function converts the categorical fetaures containing the numeric values but presented as categorical into the int format.

Input:
data= Dataset
categorical_features=List of features names associated containing categorical values

Output:
df=Dataset

Note:
Use same paramters for both train and test dataset for better accuracy


We have implemented a bike sharing project to describe how the functions can be used for both the classification and regression problem statement.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
Renato 214 Jan 02, 2023
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
scikit-survival is a Python module for survival analysis built on top of scikit-learn.

scikit-survival scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizi

Sebastian Pölsterl 876 Jan 04, 2023
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
PyPDC is a Python package for calculating asymptotic Partial Directed Coherence estimations for brain connectivity analysis.

Python asymptotic Partial Directed Coherence and Directed Coherence estimation package for brain connectivity analysis. Free software: MIT license Doc

Heitor Baldo 3 Nov 26, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021