Transform-Invariant Non-Negative Matrix Factorization

Overview

Flake8 Linter Pylint Linter Pytest and Coverage Build Documentation Publish to PyPI Open in Streamlit

Logo

Transform-Invariant Non-Negative Matrix Factorization

A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learning transform-invariant representations.

The packages supports multiple optimization backends and can be easily extended to handle application-specific types of transforms.

General Introduction

A general introduction to Non-Negative Matrix Factorization and the purpose of this package can be found on the corresponding GitHub Pages.

Installation

For using this package, you will need Python version 3.7 (or higher). The package is available via PyPI.

Installation is easiest using pip:

pip install tnmf

Demos and Examples

The package comes with a streamlit demo and a number of examples that demonstrate the capabilities of the TNMF model. They provide a good starting point for your own experiments.

Online Demo

Without requiring any installation, the demo is accessible via streamlit sharing.

Local Execution

Once the package is installed, the demo and the examples can be conveniently executed locally using the tnmf command:

  • To execute the demo, run tnmf demo.
  • A specific example can be executed by calling tnmf example .

To show the list of available examples, type tnmf example --help.

License

Copyright (c) 2021 Merck KGaA, Darmstadt, Germany

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

The full text of the license can be found in the file LICENSE in the repository root directory.

Contributing

Contributions to the package are always welcome and can be submitted via a pull request. Please note, that you have to agree to the Contributor License Agreement to contribute.

Working with the Code

To checkout the code and set up a working environment with all required Python packages, execute the following commands:

git checkout https://github.com/emdgroup/tnmf.git ./tnmf
cd tmnf
python3 -m virtualenv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Now, you should be able to execute the unit tests by calling pytest to verify that the code is running as expected.

Pull Requests

Before creating a pull request, you should always try to ensure that the automated code quality and unit tests do not fail. This section explains how to run them locally to understand and fix potential issues.

Code Style and Quality

Code style and quality are checked using flake8 and pylint. To execute them, change into the repository root directory, run the following commands and inspect their output:

flake8
pylint tnmf

In order for a pull request to be accaptable, no errors may be reported here.

Unit Tests

Automated unit tests reside inside the folder tnmf/tests. They can be executed via pytest by changing into the repository root directory and running

pytest

Debugging potential failures from the command line might be cumbersome. Most Python IDEs, however, also support pytest natively in their debugger. Again, for a pull request to be acceptable, no failures may be reported here.

Code Coverage

Code coverage in the unit tests is measured using coverage. A coverage report can be created locally from the repository root directory via

coverage run
coverage combine
coverage report

This will output a concise table with an overview of python files that are not fully covered with unit tests along with the line numbers of code that has not been executed. A more detailed, interactive report can be created using

coverage html

Then, you can open the file htmlcov/index.html in a web browser of your choice to navigate through code annotated with coverage data. Required overall coverage to is configured in setup.cfg, under the key fail_under in section [coverage:report].

Building the Documentation

To build the documentation locally, change into the doc subdirectory and run make html. Then, the documentation resides at doc\_build\html\index.html.

A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.

RPA Challenge in Python Projeto para realizar o RPA Challenge (www.rpachallenge.com), utilizando Python. O objetivo deste desafio é criar um fluxo de

Henrique A. Lourenço 1 Apr 12, 2022
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Dec 25, 2022
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
Clean and reusable data-sciency notebooks.

KPACUBO KPACUBO is a set Jupyter notebooks focused on the best practices in both software development and data science, namely, code reuse, explicit d

Matvey Morozov 1 Jan 28, 2022
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Machine Learning and Data Analytics Lab FAU 3 Dec 07, 2022
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

0 Dec 01, 2021