A Python module for clustering creators of social media content into networks

Overview

sm_content_clustering

A Python module for clustering creators of social media content into networks.

Currently supports identifying potential networks of Facebook Pages in the CSV output files from CrowdTangle.

Installation

Can install via pip with

pip install git+https://github.com/jdallen83/sm_content_clustering

Install requires pandas and fasttext

Language Prediction

To enable language prediction, you will need to download a fasttext language model. Module was tested with lid.176.ftz.

Usage

Command line

Can be called as a module for command line usage.

For usage guide:

python -m sm_content_clustering -h

Example that will create an output CSV with potential networks and predicted languages from several input CSVs:

python -m sm_content_clustering --add_language --ft_model_path /path/to/lid.176.ftz --output_path /path/to/output.csv --min_threshold 0.03 /path/to/input_1.csv /path/to/input_2.csv

Python

Module can also be called from within Python.

Example that will generate a Pandas dataframe that contains potential networks:

import sm_content_clustering.sm_processor as sm_processor

input_files = ['/path/to/1.csv', '/path/to/2.csv', '/path/to/3.csv']
df = sm_processor.ct_generate_page_clusters(input_files, add_language=True, ft_model_path='/path/to/lid.176.ftz')
print(df)

Options

Arguments for sm_processor.ct_generate_page_clusters() are

  1. infiles: Input files to read content from. Required.
  2. content_cols: Which columns from the input files to use as content for the purposes of clustering identical posts. Default: Message, Image Text, Link, Link Text
  3. add_language: Whether to predict the page and network languages. Default: False
  4. ft_model_path: Path to fasttext model file. Default: None
  5. outfile: Path to write output CSV with potential networks. Default: None
  6. update_every: How often to output clustering status. (Print status 1 every N pages). Default: 1000
  7. min_threshold: Minimum similarity score for clustering. Possible range between 0 and 1, with 1 being perfect high confidence overlap, and 0 being no overlap. Default: 0.03
  8. second_cluster_factor: Requirement that the best matched cluster for a page must score a factor X above the second best matched cluster. Default: 2.5

Methodology

Module assumes you have social media content, which includes the body content of a message and the account that created it. It begins by grouping by all messages, and finds which accounts have shared identical messages within the dataset. It then applies a basic agglomerative clustering algorithm to group the accounts into clusters that are frequently sharing the same messages.

The clustering loops through the list of all accounts, normally sorted in reverse size or popularity, and for each account, searches all existing clusters to see if there is a valid match, given the min_threshold and second_cluster_factor parameters. If there is a match, the account is added to the existing cluster. If there is not a match, then, if there is enough messages from the account to justify, a new cluster will be created with the account acting as the seed. Otherwise the account is discarded.

In theory, any measure could be used to determine if a given account should be added to a given cluster, such as, what fraction of the accounts messages match those within the cluster. Currently, the module combines message coverage, Normalized Pointwise Mutual Information, and a dampening factor that reduces matching score when there is an insufficient number of messages to be confident.

At the end, any clusters that are below a size threshold are discarded.

License

MIT License

A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021
Weather Image Recognition - Python weather application using series of data

Weather Image Recognition - Python weather application using series of data

Kushal Shingote 1 Feb 04, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Powerful, efficient particle trajectory analysis in scientific Python.

freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics

Glotzer Group 195 Dec 20, 2022
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
An implementation of the largeVis algorithm for visualizing large, high-dimensional datasets, for R

largeVis This is an implementation of the largeVis algorithm described in (https://arxiv.org/abs/1602.00370). It also incorporates: A very fast algori

336 May 25, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

PostQF Copyright © 2022 Ralph Seichter PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the ma

Ralph Seichter 11 Nov 24, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
PyNHD is a part of HyRiver software stack that is designed to aid in watershed analysis through web services.

A part of HyRiver software stack that provides access to NHD+ V2 data through NLDI and WaterData web services

Taher Chegini 23 Dec 14, 2022
songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022