Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Related tags

Deep LearningAXform
Overview

Attention-based Transformation from Latent Features to Point Clouds

This repository contains a PyTorch implementation of the paper:

Attention-based Transformation from Latent Features to Point Clouds
Kaiyi Zhang, Ximing Yang, Yuan Wu, Cheng Jin
AAAI 2022

Introduction

In point cloud generation and completion, previous methods for transforming latent features to point clouds are generally based on fully connected layers (FC-based) or folding operations (Folding-based). However, point clouds generated by FC-based methods are usually troubled by outliers and rough surfaces. For folding-based methods, their data flow is large, convergence speed is slow, and they are also hard to handle the generation of non-smooth surfaces. In this work, we propose AXform, an attention-based method to transform latent features to point clouds. AXform first generates points in an interim space, using a fully connected layer. These interim points are then aggregated to generate the target point cloud. AXform takes both parameter sharing and data flow into account, which makes it has fewer outliers, fewer network parameters, and a faster convergence speed. The points generated by AXform do not have the strong 2-manifold constraint, which improves the generation of non-smooth surfaces. When AXform is expanded to multiple branches for local generations, the centripetal constraint makes it has properties of self-clustering and space consistency, which further enables unsupervised semantic segmentation. We also adopt this scheme and design AXformNet for point cloud completion. Considerable experiments on different datasets show that our methods achieve state-of-the-art results.

Dependencies

  • Python 3.6
  • CUDA 10.0
  • G++ or GCC 7.5
  • PyTorch. Codes are tested with version 1.6.0
  • (Optional) Visdom for visualization of the training process

Install all the following tools based on CUDA.

cd utils/furthestPointSampling
python3 setup.py install

# https://github.com/stevenygd/PointFlow/tree/master/metrics
cd utils/metrics/pytorch_structural_losses
make

# https://github.com/sshaoshuai/Pointnet2.PyTorch
cd utils/Pointnet2.PyTorch/pointnet2
python3 setup.py install

# https://github.com/daerduoCarey/PyTorchEMD
cd utils/PyTorchEMD
python3 setup.py install

# not used
cd utils/randPartial
python3 setup.py install

Datasets

PCN dataset (Google Drive) are used for point cloud completion.

ShapeNetCore.v2.PC2048 (Google Drive) are used for the other tasks. The point clouds are uniformly sampled from the meshes in ShapeNetCore dataset (version 2). All the point clouds are centered and scaled to [-0.5, 0.5]. We follow the official split. The sample code based on PyTorch3D can be found in utils/sample_pytorch3d.py.

Please download them to the data directory.

Training

All the arguments, e.g. gpu_ids, mode, method, hparas, num_branch, class_choice, visual, can be adjusted before training. For example:

# axform, airplane category, 16 branches
python3 axform.py --mode train --num_branch 16 --class_choice ['airplane']

# fc-based, car category
python3 models/fc_folding.py --mode train --method fc-based --class_choice ['car']

# l-gan, airplane category, not use axform
python3 models/latent_3d_points/l-gan.py --mode train --method original --class_choice ['airplane'] --ae_ckpt_path path_to_ckpt_autoencoder.pth

# axformnet, all categories, integrated
python3 axformnet.py --mode train --method integrated --class_choice None

Pre-trained models

Here we provide pre-trained models (Google Drive) for point cloud completion. The following is the suggested way to evaluate the performance of the pre-trained models.

# vanilla
python3 axformnet.py --mode test --method vanilla --ckpt_path path_to_ckpt_vanilla.pth

# integrated
python3 axformnet.py --mode test --method integrated --ckpt_path path_to_ckpt_integrated.pth

Visualization

Matplotlib is used for the visualization of results in the paper. Code for reference can be seen in utils/draw.py.

Here we recommend using Mitsuba 2 for visualization. An example code can be found in Point Cloud Renderer.

Citation

Please cite our work if you find it useful:

@article{zhang2021axform,
 title={Attention-based Transformation from Latent Features to Point Clouds},
 author={Zhang, Kaiyi and Yang, Ximing, and Wu, Yuan and Jin, Cheng},
 journal={arXiv preprint arXiv:2112.05324},
 year={2021}
}

License

This project Code is released under the MIT License (refer to the LICENSE file for details).

Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022