Python implementation of a live deep learning based age/gender/expression recognizer

Overview

TUT live age estimator

Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer.

Image

All components use convolutional networks:

  • Detection uses an SSD model trained on Tensorflow object detection API, but running on OpenCV.
  • Age, gender, and smile recognition use a multitask mobilenet trained and running on keras.
  • Celebrity twin uses a squeeze-excite seresnet18 to extract features, trained and running on keras.

The detailed functionality of the system (without multitask and celebrity similarity) is described in our paper:

Janne Tommola, Pedram Ghazi, Bishwo Adhikari, Heikki Huttunen, "Real Time System for Facial Analysis," Submitted to EUVIP2018.

If you use our work for research purposes, consider citing the above work.

Usage instructions:

Dependencies: OpenCV 4.0.1+, Tensorflow 1.8+, Keras 2.2.3+, and faiss.

  • Requires a webcam.
  • Tested on Ubuntu Linux 16.04, 18.04 and Windows 10 with and without a GPU.
  • Install OpenCV 4.0.1 or newer. Recommended to install with pip3 install opencv-python (includes GTK support, which is required). Freetype support for nicer fonts requires manual compilation of OpenCV.
  • Install Tensorflow (1.8 or newer). On a CPU, the MKL version seems to be radically faster than others (Anaconda install by smth like conda install tensorflow=1.10.0=mkl_py36hb361250_0. Seek for proper versions with conda search tensorflow.). On GPU, use pip3 install tensorflow-gpu.
  • Install Keras 2.2.3 (or newer). Earlier versions have a slightly different way of loading the models. For example: pip3 install keras.
  • Install dlib (version 19.4 or newer) with python 3 dependencies; e.g., pip3 install dlib.
  • Install faiss with Anaconda conda install faiss-cpu -c pytorch.
  • Run with python3 EstimateAge.py.

Required deep learning models and celebrity dataset. Extract directly to the main folder so that 2 new folders are created there.

Example video.

Contributors: Heikki Huttunen, Janne Tommola

Owner
Heikki Huttunen
AI Lead at Visy
Heikki Huttunen
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022