[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Overview

Compact Transformers

Preprint Link: Escaping the Big Data Paradigm with Compact Transformers

By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Abulikemu Abuduweili[1], Jiachen Li[1,2], and Humphrey Shi[1,2,3]

*Ali Hassani and Steven Walton contributed equal work

In association with SHI Lab @ University of Oregon[1] and UIUC[2], and Picsart AI Research (PAIR)[3]

model-sym

Abstract

With the rise of Transformers as the standard for language processing, and their advancements in computer vi-sion, along with their unprecedented size and amounts of training data, many have come to believe that they are not suitable for small sets of data. This trend leads to great concerns, including but not limited to: limited availability of data in certain scientific domains and the exclusion ofthose with limited resource from research in the field. In this paper, we dispel the myth that transformers are โ€œdata-hungryโ€ and therefore can only be applied to large sets of data. We show for the first time that with the right size and tokenization, transformers can perform head-to-head with state-of-the-art CNNs on small datasets. Our model eliminates the requirement for class token and positional embed-dings through a novel sequence pooling strategy and the use of convolutions. We show that compared to CNNs, our compact transformers have fewer parameters and MACs,while obtaining similar accuracies. Our method is flexible in terms of model size, and can have as little as 0.28M parameters and achieve reasonable results. It can reach an ac-curacy of 94.72% when training from scratch on CIFAR-10,which is comparable with modern CNN based approaches,and a significant improvement over previous Transformer based models. Our simple and compact design democratizes transformers by making them accessible to those equipped with basic computing resources and/or dealing with important small datasets.

ViT-Lite: Lightweight ViT

Different from ViT we show that an image is not always worth 16x16 words and the image patch size matters. Transformers are not in fact ''data-hungry,'' as the authors proposed, and smaller patching can be used to train efficiently on smaller datasets.

CVT: Compact Vision Transformers

Compact Vision Transformers better utilize information with Sequence Pooling post encoder, eliminating the need for the class token while achieving better accuracy.

CCT: Compact Convolutional Transformers

Compact Convolutional Transformers not only use the sequence pooling but also replace the patch embedding with a convolutional embedding, allowing for better inductive bias and making positional embeddings optional. CCT achieves better accuracy than ViT-Lite and CVT and increases the flexibility of the input parameters.

Comparison

How to run

Please make sure you're using the latest stable PyTorch version:

torch==1.8.1
torchvision==0.8.1

Refer to PyTorch's Getting Started page for detailed instructions.

We recommend starting with our faster version (CCT-2/3x2) which can be run with the following command. If you are running on a CPU we recommend this model.

python main.py \
       --model cct_2 \
       --conv-size 3 \
       --conv-layers 2 \
       path/to/cifar10

If you would like to run our best running model (CCT-7/3x1) with CIFAR-10 on your machine, please use the following command.

python main.py \
       --model cct_7 \
       --conv-size 3 \
       --conv-layers 1 \
       path/to/cifar10

Results

Type can be read in the format L/PxC where L is the number of transformer layers, P is the patch/convolution size, and C (CCT only) is the number of convolutional layers.

Model Type CIFAR-10 CIFAR-100 # Params MACs
ViT-Lite 7/4 91.38% 69.75% 3.717M 0.239G
6/4 90.94% 69.20% 3.191M 0.205G
CVT 7/4 92.43% 73.01% 3.717M 0.236G
6/4 92.58% 72.25% 3.190M 0.202G
CCT 2/3x2 89.17% 66.90% 0.284M 0.033G
4/3x2 91.45% 70.46% 0.482M 0.046G
6/3x2 93.56% 74.47% 3.327M 0.241G
7/3x2 93.65% 74.77% 3.853M 0.275G
7/3x1 94.72% 76.67% 3.760M 0.947G

Model zoo will be available soon.

Citation

@article{hassani2021escaping,
	title        = {Escaping the Big Data Paradigm with Compact Transformers},
	author       = {Ali Hassani and Steven Walton and Nikhil Shah and Abulikemu Abuduweili and Jiachen Li and Humphrey Shi},
	year         = 2021,
	url          = {https://arxiv.org/abs/2104.05704},
	eprint       = {2104.05704},
	archiveprefix = {arXiv},
	primaryclass = {cs.CV}
}
Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
๐Ÿ A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
๐Ÿ“”๏ธ Generate a text-based journal from a template file.

JGen ๐Ÿ“”๏ธ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (ๅ›ฝ่ชž็ ”้•ทๅ˜ไฝ) Tokenizer for Transformers based on ้’็ฉบๆ–‡ๅบซ Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
Natural Language Processing library built with AllenNLP ๐ŸŒฒ๐ŸŒฑ

Custom Natural Language Processing with big and small models ๐ŸŒฒ๐ŸŒฑ

Recognai 65 Sep 13, 2022
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021