Pytorch implementation of XRD spectral identification from COD database

Overview

XRDidentifier

Pytorch implementation of XRD spectral identification from COD database.
Details will be explained in the paper to be submitted to NeurIPS 2021 Workshop Machine Learning and the Physical Sciences (https://ml4physicalsciences.github.io/2021/).

Features

expert model

1D-CNN (1D-RegNet) + Hierarchical Deep metric learning (AdaCos + Angular Penalty Softmax Loss)

mixture of experts

73 expert models tailered to general chemical elements with sparsely-gated layer

data augmentation

Physics-informed data augmentation

Requirements

  • Python 3.6
  • PyTorch 1.4
  • pymatgen
  • scikit-learn

Dataset Construction

In the paper, I used ICSD dataset, but it is forbidden to redistribute the CIFs followed by their license. I will write the CIF dataset construction method using COD instead.

1. download cif files from COD

Go to the COD homepage, search and download the cif URL list.
http://www.crystallography.net/cod/search.html

python3 download_cif_from_cod.py --input ./COD-selection.txt --output ./cif

2. convert cif into XRD spectra

First, check the cif files. (some files are broken or physically meaningless)

python3 read_cif.py --input ./cif --output ./lithium_datasets.pkl

lithium_datasets.pkl will be created.

Second, convert the checked results into XRD spectra database.

python3 convertXRDspectra.py --input ./lithium_datasets.pkl --batch 8 --n_aug 5

XRD_epoch5.pkl will be created.

Train expert models

python3 train_expert.py --input ./XRD_epoch5.pkl --output learning_curve.csv --batch 16 --n_epoch 100

Output data

  • Trained model -> regnet1d_adacos_epoch100.pt
  • Learning curve -> learning_curve.csv
  • Correspondence between numerical int label and crystal names -> material_labels.csv

Train Mixture-of-Experts model

You need to prepare both pre-trained expert models and pickled single XRD spectra files.
You should store the pre-trained expert models in './pretrained' folder, and the pickled single XRD spectra files in './pickles' folder.
The number of experts are automatically adjusted according to the number of the pretrained expert models.

python3 train_moe.py --data_path ./pickles --save_model moe.pt --batch 64 --epoch 100

Output data

  • Trained model -> moe.pt
  • Learning curve -> moe.csv

Citation

Papers

Implementation

Owner
Masaki Adachi
DPhil student in Machine Learning @ University of Oxford
Masaki Adachi
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021