DAT4 - General Assembly's Data Science course in Washington, DC

Related tags

Deep LearningDAT4
Overview

DAT4 Course Repository

Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15).

Instructors: Sinan Ozdemir and Kevin Markham (Data School blog, email newsletter, YouTube channel)

Teaching Assistant: Brandon Burroughs

Office hours: 1-3pm on Saturday and Sunday (Starbucks at 15th & K), 5:15-6:30pm on Monday (GA)

Course Project information

Monday Wednesday
12/15: Introduction 12/17: Python
12/22: Getting Data 12/24: No Class
12/29: No Class 12/31: No Class
1/5: Git and GitHub 1/7: Pandas
Milestone: Question and Data Set
1/12: Numpy, Machine Learning, KNN 1/14: scikit-learn, Model Evaluation Procedures
1/19: No Class 1/21: Linear Regression
1/26: Logistic Regression,
Preview of Other Models
1/28: Model Evaluation Metrics
Milestone: Data Exploration and Analysis Plan
2/2: Working a Data Problem 2/4: Clustering and Visualization
Milestone: Deadline for Topic Changes
2/9: Naive Bayes 2/11: Natural Language Processing
2/16: No Class 2/18: Decision Trees
Milestone: First Draft
2/23: Ensembling 2/25: Databases and MapReduce
3/2: Recommenders 3/4: Advanced scikit-learn
Milestone: Second Draft (Optional)
3/9: Course Review 3/11: Project Presentations
3/16: Project Presentations

Installation and Setup

  • Install the Anaconda distribution of Python 2.7x.
  • Install Git and create a GitHub account.
  • Once you receive an email invitation from Slack, join our "DAT4 team" and add your photo!

Class 1: Introduction

  • Introduction to General Assembly
  • Course overview: our philosophy and expectations (slides)
  • Data science overview (slides)
  • Tools: check for proper setup of Anaconda, overview of Slack

Homework:

  • Resolve any installation issues before next class.

Optional:

Class 2: Python

Homework:

Optional:

Resources:

Class 3: Getting Data

Homework:

  • Think about your project question, and start looking for data that will help you to answer your question.
  • Prepare for our next class on Git and GitHub:
    • You'll need to know some command line basics, so please work through GA's excellent command line tutorial and then take this brief quiz.
    • Check for proper setup of Git by running git clone https://github.com/justmarkham/DAT-project-examples.git. If that doesn't work, you probably need to install Git.
    • Create a GitHub account. (You don't need to download anything from GitHub.)

Optional:

  • If you aren't feeling comfortable with the Python we've done so far, keep practicing using the resources above!

Resources:

Class 4: Git and GitHub

  • Special guest: Nick DePrey presenting his class project from DAT2
  • Git and GitHub (slides)

Homework:

  • Project milestone: Submit your question and data set to your folder in DAT4-students before class on Wednesday! (This is a great opportunity to practice writing Markdown and creating a pull request.)

Optional:

  • Clone this repo (DAT4) for easy access to the course files.

Resources:

Class 5: Pandas

Homework:

Optional:

Resources:

  • For more on Pandas plotting, read the visualization page from the official Pandas documentation.
  • To learn how to customize your plots further, browse through this notebook on matplotlib.
  • To explore different types of visualizations and when to use them, Choosing a Good Chart is a handy one-page reference, and Columbia's Data Mining class has an excellent slide deck.

Class 6: Numpy, Machine Learning, KNN

  • Numpy (code)
  • "Human learning" with iris data (code, solution)
  • Machine Learning and K-Nearest Neighbors (slides)

Homework:

  • Read this excellent article, Understanding the Bias-Variance Tradeoff, and be prepared to discuss it in class on Wednesday. (You can ignore sections 4.2 and 4.3.) Here are some questions to think about while you read:
    • In the Party Registration example, what are the features? What is the response? Is this a regression or classification problem?
    • In the interactive visualization, try using different values for K across different sets of training data. What value of K do you think is "best"? How do you define "best"?
    • In the visualization, what do the lighter colors versus the darker colors mean? How is the darkness calculated?
    • How does the choice of K affect model bias? How about variance?
    • As you experiment with K and generate new training data, how can you "see" high versus low variance? How can you "see" high versus low bias?
    • Why should we care about variance at all? Shouldn't we just minimize bias and ignore variance?
    • Does a high value for K cause over-fitting or under-fitting?

Resources:

Class 7: scikit-learn, Model Evaluation Procedures

Homework:

Optional:

  • Practice what we learned in class today!
    • If you have gathered your project data already: Try using KNN for classification, and then evaluate your model. Don't worry about using all of your features, just focus on getting the end-to-end process working in scikit-learn. (Even if your project is regression instead of classification, you can easily convert a regression problem into a classification problem by converting numerical ranges into categories.)
    • If you don't yet have your project data: Pick a suitable dataset from the UCI Machine Learning Repository, try using KNN for classification, and evaluate your model. The Glass Identification Data Set is a good one to start with.
    • Either way, you can submit your commented code to DAT4-students, and we'll give you feedback.

Resources:

Class 8: Linear Regression

Homework:

Optional:

  • Similar to last class, your optional exercise is to practice what we have been learning in class, either on your project data or on another dataset.

Resources:

Class 9: Logistic Regression, Preview of Other Models

Resources:

Class 10: Model Evaluation Metrics

  • Finishing model evaluation procedures (slides, code)
    • Review of test set approach
    • Cross-validation
  • Model evaluation metrics (slides)
    • Regression:
      • Root Mean Squared Error (code)
    • Classification:

Homework:

Optional:

Resources:

Class 11: Working a Data Problem

  • Today we will work on a real world data problem! Our data is stock data over 7 months of a fictional company ZYX including twitter sentiment, volume and stock price. Our goal is to create a predictive model that predicts forward returns.

  • Project overview (slides)

    • Be sure to read documentation thoroughly and ask questions! We may not have included all of the information you need...

Class 12: Clustering and Visualization

  • The slides today will focus on our first look at unsupervised learning, K-Means Clustering!
  • The code for today focuses on two main examples:
    • We will investigate simple clustering using the iris data set.
    • We will take a look at a harder example, using Pandora songs as data. See data.

Homework:

  • Read Paul Graham's A Plan for Spam and be prepared to discuss it in class on Monday. Here are some questions to think about while you read:
    • Should a spam filter optimize for sensitivity or specificity, in Paul's opinion?
    • Before he tried the "statistical approach" to spam filtering, what was his approach?
    • How exactly does his statistical filtering system work?
    • What did Paul say were some of the benefits of the statistical approach?
    • How good was his prediction of the "spam of the future"?
  • Below are the foundational topics upon which Monday's class will depend. Please review these materials before class:
    • Confusion matrix: Kevin's guide roughly mirrors the lecture from class 10.
    • Sensitivity and specificity: Rahul Patwari has an excellent video (9 minutes).
    • Basics of probability: These introductory slides (from the OpenIntro Statistics textbook) are quite good and include integrated quizzes. Pay specific attention to these terms: probability, sample space, mutually exclusive, independent.
  • You should definitely be working on your project! Your rough draft is due in two weeks!

Resources:

Class 13: Naive Bayes

Resources:

Homework:

  • Download all of the NLTK collections.
    • In Python, use the following commands to bring up the download menu.
    • import nltk
    • nltk.download()
    • Choose "all".
    • Alternatively, just type nltk.download('all')
  • Install two new packages: textblob and lda.
    • Open a terminal or command prompt.
    • Type pip install textblob and pip install lda.

Class 14: Natural Language Processing

  • Overview of Natural Language Processing (slides)
  • Real World Examples
  • Natural Language Processing (code)
  • NLTK: tokenization, stemming, lemmatization, part of speech tagging, stopwords, Named Entity Recognition (Stanford NER Tagger), TF-IDF, LDA, document summarization
  • Alternative: TextBlob

Resources:

Class 15: Decision Trees

Homework:

  • By next Wednesday (before class), review the project drafts of your two assigned peers according to these guidelines. You should upload your feedback as a Markdown (or plain text) document to the "reviews" folder of DAT4-students. If your last name is Smith and you are reviewing Jones, you should name your file smith_reviews_jones.md.

Resources:

Installing Graphviz (optional):

  • Mac:
  • Windows:
    • Download and install MSI file
    • Add it to your Path: Go to Control Panel, System, Advanced System Settings, Environment Variables. Under system variables, edit "Path" to include the path to the "bin" folder, such as: C:\Program Files (x86)\Graphviz2.38\bin

Class 16: Ensembling

Resources:

Class 17: Databases and MapReduce

Resources:

Class 18: Recommenders

  • Recommendation Engines slides
  • Recommendation Engine Example code

Resources:

Class 19: Advanced scikit-learn

Homework:

Resources:

Class 20: Course Review

Resources:

Class 21: Project Presentations

Class 22: Project Presentations

Owner
Kevin Markham
Founder of Data School
Kevin Markham
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022