Hydra Lightning Template for Structured Configs

Overview

Hydra Lightning Template for Structured Configs

Template for creating projects with pytorch-lightning and hydra.

How to use this template?

Create your own project on GitHub with this template by clicking the Use this template button.

You now have to only add your own dataloader, dataset, model, optimizer and loss and you should be ready to go. To see if you have all modules installed and everything works fine, you should run the unit tests!

How to add my own module?

For this tutorial it is expected that you already know pytorch (and best also some pytorch-lightning). If you don't know hydra that should be fine, but definitely check out their docs.

If you encounter any problems have a look at the my_simple_model branch of this repo, where I played through this complete tutorial. So you can find all files there.

Lets explore how to use hydra and this template by showcasing how one would add a simple own CNN to this repo. For the tests I used MNIST as dataset so we will just continue using that. But if you know how to write a pytorch-lightning Dataloader and a torch Dataset it should be just as easy to replace them after this small tutorial.

To add our own model we have to do the following steps:

  1. in the folder src/models we create a new file containing our torch model (a torch.nn.Module).
  2. Add the model in the hydra config library by adding it to the src/lib/model.py file.
  3. Register the model in the hydra global-config-register by following the pattern in src/lib/config.py and creating a new entry there.
  4. (Optional) Create a yaml file for the model. This makes sense if the model is used with a lot of different settings. So we can give those settings individual names, which makes them easier to call.
  5. Add an experiment using that model

1. Creating the simplest model:

Create the file src/models/my_simple_model.py with the following content:

import torch.nn as nn
import torch.nn.functional as F


class MySimpleModel(nn.Module):
    def __init__(self, input_channels=1, num_classes=10):
        super(MySimpleModel, self).__init__()

        # When the image enters the net at conv1 it has a size of 28x28x1, because there is a single color channel
        self.conv1 = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1, padding=1, bias=True)
        # Since we are using padding the size of the image does not change after the conv layer
        self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
        # due to the maxpooling shape and stride our image is now 14x14
        self.conv2 = nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=True)
        # still 14x14
        # We will again use maxpool so now it is 7x7
        self.fully_connected = nn.Linear(16 * 7 * 7, num_classes, bias=True)

    def forward(self, x):
        x = self.conv1(x)
        x = self.max_pool(x)
        x = self.conv2(x)
        x = self.max_pool(x)
        x = x.flatten(start_dim=1)  # To use a fully connected layer in the end we need to have a 1D array
        x = self.fully_connected(x)
        return F.softmax(x)  #  we apply a softmax here to return probabilities between 0 and 1

2. Add the model to the lib:

Change the file src/lib/model.py to add our model there. Just add the following lines:

@dataclass
class MySimpleModelLib:
    _target_: str = "src.models.my_simple_model.MySimpleModel"
    input_channels: int = 1
    num_classes: int = 10

A few pittfalls to avoid are:

  • Do not forget to decorate your class with @dataclass !
  • do not forget to specify the type !
  • Have a look at other lib files to see how to implement None as default and use the Any type.
  • do not forget any inputs to the actual model (like forget the parameter input_channels) because you will never be able to override the input channels from outside the source code.

3. Register the model in hydra:

For hydra to know about your model, you have to register it. We do this in the file src/lib/config.py. All we have to do here is adding 2 lines.

  1. We have to import the library model. So at the imports we add:
from src.lib.model import MySimpleModelLib
  1. Register the model by using the hydra ConfigStore. Best keep the code clean, so find the section where the models are defined and add:
cs.store(name="my_simple_model_base", node=MySimpleModelLib, group=model_group)

I like to append the _base her to later distinguish between the yaml-config and the structured-config. If you want to know more about this you will probably have to read the hydra documentation.

4. Add a yaml config file:

This step is not necessary. We could already use our model in hydra now, which would at this point go under the name my_simple_model_base. But for the sake of completion lets create a yaml config as well.

For this we will have to create this file: conf/model/my_simple_model.yaml

The content of this file should be

defaults:
  - my_simple_model_base  # this is the name of the registered model that we would like to extend
  - _self_  # adding this BELOW!! the registered name means, that everything in this yaml file will override the defaults

# you can only specify values here that are also in the registered model (src/lib/model/MySimpleModelLib)
num_classes: 10
input_channels: 1

If you want, you can of course drop the comments.

Why did we create this config file? Lets say you would like to also have t he same model, but with 3 input channels when you do predictions on colored images. All you would have to do is either change the value input_channels: 3 of the file conf/model/my_simple_model.yaml. But if you want to give it a distiguishable name (which makes sense for more complex usecases) then you can just create another file conf/model/my_simple_model_rgb.yaml for example, which has the content

defaults:
  - my_simple_model_base
  - _self_

num_classes: 10
input_channels: 3  # <- this is the only thing that changed

Now you could from a command line very easily switch between the 2 configs without remembering any specific numbers.

5. Add an experiment using that model:

There are 2 ways to use your model now in a training run.

  1. From the command line: All you have to do is keep everything with the defaults and just exchanging the model from the command line using hydras command line interface:
python main.py model=my_simple_model

or

python main.py model=my_simple_model_rgb

or if you did not create the yaml-file:

python main.py model=my_simple_model_base

From the command line we could also specify different inputs to our model:

python main.py model=my_simple_model_base model.input_channels=3
  1. We can create an experiment using this model. This definitely is preferable when the setups get more complex. For this, we have to create a new yaml file in the experiment folder. So lets create the file conf/experiment/my_simple_model_experiment.yaml with the following content:
# @package _global_

defaults:
  - override /lightning_module: default
  - override /datamodule: mnist
  - override /datamodule/dataset: mnist
  - override /loss: nll_loss
  - override /datamodule/train_transforms: no_transforms
  - override /datamodule/valid_transforms: no_transforms
  - override /model: my_simple_model  # <- this is the line where we add our own model to the experiment
  - override /optimizer: sgd
  - override /loss: nll_loss
  - override /strategy: null
  - override /logger/tensorboard: tensorboard
  - override /callbacks/checkpoint: model_checkpoint
  - override /callbacks/early_stopping: early_stopping
  - override /callbacks/lr_monitor: lr_monitor

  - override /hydra/launcher: local
  - _self_

output_dir_base_path: ./outputs
random_seed: 7
print_config: true
log_level: "info"

trainer:
  fast_dev_run: false
  num_sanity_val_steps: 3
  max_epochs: 3
  gpus: 0
  limit_train_batches: 3
  limit_val_batches: 3

datamodule:
  num_workers: 0
  batch_size: 4

Most settings here are the same as in the defaults, which are specified in conf/config.yaml but for this tutorial I think explicit is easier to understand the implicit.

To use the experiment we run our model with

python main.py +experiment=my_simple_model_experiment

Again we can also change all set values from the command line

python main.py +experiment=my_simple_model_experiment datamodule.num_workers=20

It should be easy now to follow the same steps to include your own datamodule, dataset, transforms, optimizers or whatever else you might need.

Owner
Model-driven Machine Learning
Model-driven Machine Learning
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022