Subdivision-based Mesh Convolutional Networks

Overview

Subdivision-based Mesh Convolutional Networks

The official implementation of SubdivNet in our paper,

Subdivion-based Mesh Convolutional Networks

teaser

Requirements

  • python3.7+
  • CUDA 10.1+
  • Jittor

To install python requirements:

pip install -r requirements.txt

Fetch Data

This repo provides training scripts for classification and segementation, on the following datasets,

  • shrec11-split10
  • shrec11-split16
  • cubes
  • manifold40 (based on ModelNet40)
  • humanbody
  • coseg-aliens

To download the preprocessed data, run

sh scripts/<DATASET_NAME>/get_data.sh

Manfold40 (before remeshed) can be downloaded via this link.

Training

To train the model(s) in the paper, run this command:

sh scripts/<DATASET_NAME>/train.sh

To speed up training, you can use multiple gpus. First install OpenMPI:

sudo apt install openmpi-bin openmpi-common libopenmpi-dev

Then run the following command,

CUDA_VISIBLE_DEVICES="2,3" mpirun -np 2 sh scripts/<DATASET_NAME>/train.sh

Evaluation

To evaluate the model on a dataset, run:

sh scripts/<DATASET_NAME>/test.sh

The pretrained weights are provided. Run the following command to download them.

sh scripts/<DATASET_NAME>/get_pretrained.sh

Visualize

After testing the segmentation network, there will be colored shapes in a results directory. Use your favorite 3D viewer to check them.

Apply to your own data

To create your own data with subdivision sequence connectivity, you may use our provided tool that implements the MAPS algorithm. You may also refer to NeuralSubdivision, as they also provide a MATLAB scripts for remeshing.

To run our implemented MAPS algorithm, first install the following python dependecies,

triangle
pymeshlab
shapely
sortedcollections
networkx
rtree

Then run datagen_maps.py to remesh your meshes.

Cite

Please cite our paper if you use this code in your own work:

@misc{hu2021subdivisionbased,
      title={Subdivision-Based Mesh Convolution Networks}, 
      author={Shi-Min Hu and Zheng-Ning Liu and Meng-Hao Guo and Jun-Xiong Cai and Jiahui Huang and Tai-Jiang Mu and Ralph R. Martin},
      year={2021},
      eprint={2106.02285},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zheng-Ning Liu
Zheng-Ning Liu
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022