Subdivision-based Mesh Convolutional Networks

Overview

Subdivision-based Mesh Convolutional Networks

The official implementation of SubdivNet in our paper,

Subdivion-based Mesh Convolutional Networks

teaser

Requirements

  • python3.7+
  • CUDA 10.1+
  • Jittor

To install python requirements:

pip install -r requirements.txt

Fetch Data

This repo provides training scripts for classification and segementation, on the following datasets,

  • shrec11-split10
  • shrec11-split16
  • cubes
  • manifold40 (based on ModelNet40)
  • humanbody
  • coseg-aliens

To download the preprocessed data, run

sh scripts/<DATASET_NAME>/get_data.sh

Manfold40 (before remeshed) can be downloaded via this link.

Training

To train the model(s) in the paper, run this command:

sh scripts/<DATASET_NAME>/train.sh

To speed up training, you can use multiple gpus. First install OpenMPI:

sudo apt install openmpi-bin openmpi-common libopenmpi-dev

Then run the following command,

CUDA_VISIBLE_DEVICES="2,3" mpirun -np 2 sh scripts/<DATASET_NAME>/train.sh

Evaluation

To evaluate the model on a dataset, run:

sh scripts/<DATASET_NAME>/test.sh

The pretrained weights are provided. Run the following command to download them.

sh scripts/<DATASET_NAME>/get_pretrained.sh

Visualize

After testing the segmentation network, there will be colored shapes in a results directory. Use your favorite 3D viewer to check them.

Apply to your own data

To create your own data with subdivision sequence connectivity, you may use our provided tool that implements the MAPS algorithm. You may also refer to NeuralSubdivision, as they also provide a MATLAB scripts for remeshing.

To run our implemented MAPS algorithm, first install the following python dependecies,

triangle
pymeshlab
shapely
sortedcollections
networkx
rtree

Then run datagen_maps.py to remesh your meshes.

Cite

Please cite our paper if you use this code in your own work:

@misc{hu2021subdivisionbased,
      title={Subdivision-Based Mesh Convolution Networks}, 
      author={Shi-Min Hu and Zheng-Ning Liu and Meng-Hao Guo and Jun-Xiong Cai and Jiahui Huang and Tai-Jiang Mu and Ralph R. Martin},
      year={2021},
      eprint={2106.02285},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zheng-Ning Liu
Zheng-Ning Liu
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022