Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

Overview

FaderNetworks

PyTorch implementation of Fader Networks (NIPS 2017).

Fader Networks can generate different realistic versions of images by modifying attributes such as gender or age group. They can swap multiple attributes at a time, and continuously interpolate between each attribute value. In this repository we provide the code to reproduce the results presented in the paper, as well as trained models.

Single-attribute swap

Below are some examples of different attribute swaps:

Multi-attributes swap

The Fader Networks are also designed to disentangle multiple attributes at a time:

Model

The main branch of the model (Inference Model), is an autoencoder of images. Given an image x and an attribute y (e.g. male/female), the decoder is trained to reconstruct the image from the latent state E(x) and y. The other branch (Adversarial Component), is composed of a discriminator trained to predict the attribute from the latent state. The encoder of the Inference Model is trained not only to reconstruct the image, but also to fool the discriminator, by removing from E(x) the information related to the attribute. As a result, the decoder needs to consider y to properly reconstruct the image. During training, the model is trained using real attribute values, but at test time, y can be manipulated to generate variations of the original image.

Dependencies

Installation

Simply clone the repository:

git clone https://github.com/facebookresearch/FaderNetworks.git
cd FaderNetworks

Dataset

Download the aligned and cropped CelebA dataset from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. Extract all images and move them to the data/img_align_celeba/ folder. There should be 202599 images. The dataset also provides a file list_attr_celeba.txt containing the list of the 40 attributes associated with each image. Move it to data/. Then simply run:

cd data
./preprocess.py

It will resize images, and create 2 files: images_256_256.pth and attributes.pth. The first one contains a tensor of size (202599, 3, 256, 256) containing the concatenation of all resized images. Note that you can update the image size in preprocess.py to work with different resolutions. The second file is a pre-processed version of the attributes.

Pretrained models

You can download pretrained classifiers and Fader Networks by running:

cd models
./download.sh

Train your own models

Train a classifier

To train your own model you first need to train a classifier to let the model evaluate the swap quality during the training. Training a good classifier is relatively simple for most attributes, and a good model can be trained in a few minutes. We provide a trained classifier for all attributes in models/classifier256.pth. Note that the classifier does not need to be state-of-the-art, it is not used during the training process, but is just here to monitor the swap quality. If you want to train your own classifier, you can run classifier.py, using the following parameters:

python classifier.py

# Main parameters
--img_sz 256                  # image size
--img_fm 3                    # number of feature maps
--attr "*"                    # attributes list. "*" for all attributes

# Network architecture
--init_fm 32                  # number of feature maps in the first layer
--max_fm 512                  # maximum number of feature maps
--hid_dim 512                 # hidden layer size

# Training parameters
--v_flip False                # randomly flip images vertically (data augmentation)
--h_flip True                 # randomly flip images horizontally (data augmentation)
--batch_size 32               # batch size
--optimizer "adam,lr=0.0002"  # optimizer
--clip_grad_norm 5            # clip gradient L2 norm
--n_epochs 1000               # number of epochs
--epoch_size 50000            # number of images per epoch

# Reload
--reload ""                   # reload a trained classifier
--debug False                 # debug mode (if True, load a small subset of the dataset)

Train a Fader Network

You can train a Fader Network with train.py. The autoencoder can receive feedback from:

  • The image reconstruction loss
  • The latent discriminator loss
  • The PatchGAN discriminator loss
  • The classifier loss

In the paper, only the first two losses are used, but the two others could improve the results further. You can tune the impact of each of these losses with the lambda_ae, lambda_lat_dis, lambda_ptc_dis, and lambda_clf_dis coefficients. Below is a complete list of all parameters:

# Main parameters
--img_sz 256                      # image size
--img_fm 3                        # number of feature maps
--attr "Male"                     # attributes list. "*" for all attributes

# Networks architecture
--instance_norm False             # use instance normalization instead of batch normalization
--init_fm 32                      # number of feature maps in the first layer
--max_fm 512                      # maximum number of feature maps
--n_layers 6                      # number of layers in the encoder / decoder
--n_skip 0                        # number of skip connections
--deconv_method "convtranspose"   # deconvolution method
--hid_dim 512                     # hidden layer size
--dec_dropout 0                   # dropout in the decoder
--lat_dis_dropout 0.3             # dropout in the latent discriminator

# Training parameters
--n_lat_dis 1                     # number of latent discriminator training steps
--n_ptc_dis 0                     # number of PatchGAN discriminator training steps
--n_clf_dis 0                     # number of classifier training steps
--smooth_label 0.2                # smooth discriminator labels
--lambda_ae 1                     # autoencoder loss coefficient
--lambda_lat_dis 0.0001           # latent discriminator loss coefficient
--lambda_ptc_dis 0                # PatchGAN discriminator loss coefficient
--lambda_clf_dis 0                # classifier loss coefficient
--lambda_schedule 500000          # lambda scheduling (0 to disable)
--v_flip False                    # randomly flip images vertically (data augmentation)
--h_flip True                     # randomly flip images horizontally (data augmentation)
--batch_size 32                   # batch size
--ae_optimizer "adam,lr=0.0002"   # autoencoder optimizer
--dis_optimizer "adam,lr=0.0002"  # discriminator optimizer
--clip_grad_norm 5                # clip gradient L2 norm
--n_epochs 1000                   # number of epochs
--epoch_size 50000                # number of images per epoch

# Reload
--ae_reload ""                    # reload pretrained autoencoder
--lat_dis_reload ""               # reload pretrained latent discriminator
--ptc_dis_reload ""               # reload pretrained PatchGAN discriminator
--clf_dis_reload ""               # reload pretrained classifier
--eval_clf ""                     # evaluation classifier (trained with classifier.py)
--debug False                     # debug mode (if True, load a small subset of the dataset)

Generate interpolations

Given a trained model, you can use it to swap attributes of images in the dataset. Below are examples using the pretrained models:

# Narrow Eyes
python interpolate.py --model_path models/narrow_eyes.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path narrow_eyes.png

# Eyeglasses
python interpolate.py --model_path models/eyeglasses.pth --n_images 10 --n_interpolations 10 --alpha_min 2.0 --alpha_max 2.0 --output_path eyeglasses.png

# Age
python interpolate.py --model_path models/young.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path young.png

# Gender
python interpolate.py --model_path models/male.pth --n_images 10 --n_interpolations 10 --alpha_min 2.0 --alpha_max 2.0 --output_path male.png

# Pointy nose
python interpolate.py --model_path models/pointy_nose.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path pointy_nose.png

These commands will generate images with 10 rows of 12 columns with the interpolated images. The first column corresponds to the original image, the second is the reconstructed image (without alteration of the attribute), and the remaining ones correspond to the interpolated images. alpha_min and alpha_max represent the range of the interpolation. Values superior to 1 represent generations over the True / False range of the boolean attribute in the model. Note that the variations of some attributes may only be noticeable for high values of alphas. For instance, for the "eyeglasses" or "gender" attributes, alpha_max=2 is usually enough, while for the "age" or "narrow eyes" attributes, it is better to go up to alpha_max=10.

References

If you find this code useful, please consider citing:

Fader Networks: Manipulating Images by Sliding Attributes - G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, M'A. Ranzato

@inproceedings{lample2017fader,
  title={Fader Networks: Manipulating Images by Sliding Attributes},
  author={Lample, Guillaume and Zeghidour, Neil and Usunier, Nicolas and Bordes, Antoine and DENOYER, Ludovic and others},
  booktitle={Advances in Neural Information Processing Systems},
  pages={5963--5972},
  year={2017}
}

Contact: [email protected], [email protected]

Owner
Facebook Research
Facebook Research
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022