Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Overview

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Paper

Description

Recent research has shown that numerous human-interpretable directions exist in the latent space of GANs. In this paper, we develop an automatic procedure for finding directions that lead to foreground-background image separation, and we use these directions to train an image segmentation model without human supervision. Our method is generator-agnostic, producing strong segmentation results with a wide range of different GAN architectures. Furthermore, by leveraging GANs pretrained on large datasets such as ImageNet, we are able to segment images from a range of domains without further training or finetuning. Evaluating our method on image segmentation benchmarks, we compare favorably to prior work while using neither human supervision nor access to the training data. Broadly, our results demonstrate that automatically extracting foreground-background structure from pretrained deep generative models can serve as a remarkably effective substitute for human supervision.

How to run

Dependencies

This code depends on pytorch-pretrained-gans, a repository I developed that exposes a standard interface for a variety of pretrained GANs. Install it with:

pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

The pretrained weights for most GANs are downloaded automatically. For those that are not, I have provided scripts in that repository.

There are also some standard dependencies:

Install them with:

pip install hydra-core==1.1.0dev5 pytorch_lightning albumentations tqdm retry kornia

General Approach

Our unsupervised segmentation approach has two steps: (1) finding a good direction in latent space, and (2) training a segmentation model from data and masks that are generated using this direction.

In detail, this means:

  1. We use optimization/main.py finds a salient direction (or two salient directions) in the latent space of a given pretrained GAN that leads to foreground-background image separation.
  2. We use segmentation/main.py to train a standard segmentation network (a UNet) on generated data. The data can be generated in two ways: (1) you can generate the images on-the-fly during training, or (2) you can generate the images before training the segmentation model using segmentation/generate_and_save.py and then train the segmentation network afterward. The second approach is faster, but requires more disk space (~10GB for 1 million images). We will also provide a pre-generated dataset (coming soon).

Configuration and Logging

We use Hydra for configuration and Weights and Biases for logging. With Hydra, you can specify a config file (found in configs/) with --config-name=myconfig.yaml. You can also override the config from the command line by specifying the overriding arguments (without --). For example, you can enable Weights and Biases with wandb=True and you can name the run with name=myname.

The structure of the configs is as follows:

config
├── data_gen
│   ├── generated.yaml  # <- for generating data with 1 latent direction
│   ├── generated-dual.yaml   # <- for generating data with 2 latent directions
│   ├── generator  # <- different types of GANs for generating data
│   │   ├── bigbigan.yaml
│   │   ├── pretrainedbiggan.yaml
│   │   ├── selfconditionedgan.yaml
│   │   ├── studiogan.yaml
│   │   └── stylegan2.yaml 
│   └── saved.yaml  # <- for using pre-generated data
├── optimize.yaml  # <- for optimization
└── segment.yaml   # <- for segmentation

Code Structure

The code is structured as follows:

src
├── models  # <- segmentation model
│   ├── __init__.py
│   ├── latent_shift_model.py  # <- shifts direction in latent space
│   ├── unet_model.py  # <- segmentation model
│   └── unet_parts.py
├── config  # <- configuration, explained above
│   ├── ... 
├── datasets  # <- classes for loading datasets during segmentation/generation
│   ├── __init__.py
│   ├── gan_dataset.py  # <- for generating dataset
│   ├── saved_gan_dataset.py  # <- for pre-generated dataset
│   └── real_dataset.py  # <- for evaluation datasets (i.e. real images)
├── optimization
│   ├── main.py  # <- main script
│   └── utils.py  # <- helper functions
└── segmentation
    ├── generate_and_save.py  # <- for generating a dataset and saving it to disk
    ├── main.py  # <- main script, uses PyTorch Lightning 
    ├── metrics.py  # <- for mIoU/F-score calculations
    └── utils.py  # <- helper functions

Datasets

The datasets should have the following structure. You can easily add you own datasets or use only a subset of these datasets by modifying config/segment.yaml. You should specify your directory by modifying root in that file on line 19, or by passing data_seg.root=MY_DIR using the command line whenever you call python segmentation/main.py.

├── DUT_OMRON
│   ├── DUT-OMRON-image
│   │   └── ...
│   └── pixelwiseGT-new-PNG
│       └── ...
├── DUTS
│   ├── DUTS-TE
│   │   ├── DUTS-TE-Image
│   │   │   └── ...
│   │   └── DUTS-TE-Mask
│   │       └── ...
│   └── DUTS-TR
│       ├── DUTS-TR-Image
│       │   └── ...
│       └── DUTS-TR-Mask
│           └── ...
├── ECSSD
│   ├── ground_truth_mask
│   │   └── ...
│   └── images
│       └── ...
├── CUB_200_2011
│   ├── train_images
│   │   └── ...
│   ├── train_segmentations
│   │   └── ...
│   ├── test_images
│   │   └── ...
│   └── test_segmentations
│       └── ...
└── Flowers
    ├── train_images
    │   └── ...
    ├── train_segmentations
    │   └── ...
    ├── test_images
    │   └── ...
    └── test_segmentations
        └── ...

The datasets can be downloaded from:

Training

Before training, make sure you understand the general approach (explained above).

Note: All commands are called from within the src directory.

In the example commands below, we use BigBiGAN. You can easily switch out BigBiGAN for another model if you would like to.

Optimization

PYTHONPATH=. python optimization/main.py data_gen/generator=bigbigan name=NAME

This should take less than 5 minutes to run. The output will be saved in outputs/optimization/fixed-BigBiGAN-NAME/DATE/, with the final checkpoint in latest.pth.

Segmentation with precomputed generations

The recommended way of training is to generate the data first and train afterward. An example generation script would be:

PYTHONPATH=. python segmentation/generate_and_save.py \
name=NAME \
data_gen=generated \
data_gen/generator=bigbigan \
data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \
data_gen.save_dir="YOUR_OUTPUT_DIR" \
data_gen.save_size=1000000 \
data_gen.kwargs.batch_size=1 \
data_gen.kwargs.generation_batch_size=128

This will generate 1 million image-label pairs and save them to YOUR_OUTPUT_DIR/images. Note that YOUR_OUTPUT_DIR should be an absolute path, not a relative one, because Hydra changes the working directory. You may also want to tune the generation_batch_size to maximize GPU utilization on your machine. It takes around 3-4 hours to generate 1 million images on a single V100 GPU.

Once you have generated data, you can train a segmentation model:

PYTHONPATH=. python segmentation/main.py \
name=NAME \
data_gen=saved \
data_gen.data.root="YOUR_OUTPUT_DIR_FROM_ABOVE"

It takes around 3 hours on 1 GPU to complete 18000 iterations, by which point the model has converged (in fact you can probably get away with fewer steps, I would guess around ~5000).

Segmentation with on-the-fly generations

Alternatively, you can generate data while training the segmentation model. An example script would be:

PYTHONPATH=. python segmentation/main.py \
name=NAME \
data_gen=generated \
data_gen/generator=bigbigan \
data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \
data_gen.kwargs.generation_batch_size=128

Evaluation

To evaluate, set the train argument to False. For example:

python train.py \
name="eval" \
train=False \
eval_checkpoint=${checkpoint} \
data_seg.root=${DATASETS_DIR} 

Pretrained models

  • ... are coming soon!

Available GANs

It should be possible to use any GAN from pytorch-pretrained-gans, including:

Citation

@inproceedings{melaskyriazi2021finding,
  author    = {Melas-Kyriazi, Luke and Rupprecht, Christian and Laina, Iro and Vedaldi, Andrea},
  title     = {Finding an Unsupervised Image Segmenter in each of your Deep Generative Models},
  booktitle = arxiv,
  year      = {2021}
}
You might also like...
pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations. The pytorch implementation of  DG-Font: Deformable Generative Networks for Unsupervised Font Generation
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

DeepCAD: A Deep Generative Network for Computer-Aided Design Models
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

Comments
  • pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

    pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

    Hi, is the repo in the pytorch-pretrained-gans step public or is that the right URL for it? I got prompted for username and password when I tried the pip install git+ and don't see the repo at that URL: https://github.com/lukemelas/pytorch-pretrained-gans (Get 404)

    Thanks.

    opened by ModMorph 2
  • Help producing results with the StyleGAN models

    Help producing results with the StyleGAN models

    Hi there!

    I'm having trouble producing meaningful results on StyleGAN2 on AFHQ. I've been using the default setup and hyperparameters. After 50 iterations (with the default batch size of 32) I get visualisations that look initially promising: (https://i.imgur.com/eR79Wyd.png). But as training progresses, and indeed when it reaches 300 iterations, these are the visualisation results: https://i.imgur.com/36zhBzT.png.

    I've tried playing with the learning rate, and the number of iterations with no success yet. Did you have tips here or ideas as to what might be going wrong here?

    Thanks! James.

    opened by james-oldfield 1
  • bug

    bug

    Firstly, I ran PYTHONPATH=. python optimization/main.py data_gen/generator=bigbigan name=NAME. And then, I ran PYTHONPATH=. python segmentation/generate_and_save.py \ name=NAME \ data_gen=generated \ data_gen/generator=bigbigan \ data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \ data_gen.save_dir="YOUR_OUTPUT_DIR" \ data_gen.save_size=1000000 \ data_gen.kwargs.batch_size=1 \ data_gen.kwargs.generation_batch_size=128 When I ran PYTHONPATH=. python segmentation/main.py \ name=NAME \ data_gen=saved \ data_gen.data.root="YOUR_OUTPUT_DIR_FROM_ABOVE" An error occurred. The error is: Traceback (most recent call last): File "segmentation/main.py", line 98, in main kwargs = dict(images_dir=_cfg.images_dir, labels_dir=_cfg.labels_dir, omegaconf.errors.InterpolationResolutionError: KeyError raised while resolving interpolation: "Environment variable '/raid/name/gaochengli/segmentation/src/images' not found" full_key: data_seg.data[0].images_dir object_type=dict According to what you wrote, I modified the root (config/segment.yaml on line 19). Just like this "/raid/name/gaochengli/segmentation/src/images". And the folder contains all data sets,whose name is images. I wonder why such a mistake happened.

    opened by Lee-Gao 1
Owner
Luke Melas-Kyriazi
I'm student at Harvard University studying mathematics and computer science, always open to collaborate on interesting projects!
Luke Melas-Kyriazi
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022