Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Overview

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data
(CVPR 2022)

teaser2

Potentials of primitive shapes for representing things. We only use a line, ellipse, and rectangle to express a cat and a temple. These examples motivate us to develop Primitives, which generates the data by a simple composition of the shapes.

Official pytorch implementation of "Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data"

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data
Kyungjune Baek and Hyunjung Shim

Yonsei University

Absract Transfer learning for GANs successfully improves generation performance under low-shot regimes. However, existing studies show that the pretrained model using a single benchmark dataset is not generalized to various target datasets. More importantly, the pretrained model can be vulnerable to copyright or privacy risks as membership inference attack advances. To resolve both issues, we propose an effective and unbiased data synthesizer, namely Primitives-PS, inspired by the generic characteristics of natural images. Specifically, we utilize 1) the generic statistics on the frequency magnitude spectrum, 2) the elementary shape (i.e., image composition via elementary shapes) for representing the structure information, and 3) the existence of saliency as prior. Since our synthesizer only considers the generic properties of natural images, the single model pretrained on our dataset can be consistently transferred to various target datasets, and even outperforms the previous methods pretrained with the natural images in terms of Fr'echet inception distance. Extensive analysis, ablation study, and evaluations demonstrate that each component of our data synthesizer is effective, and provide insights on the desirable nature of the pretrained model for the transferability of GANs.

Requirement

Environment

For the easy construction of environment, please use the docker image.

  • Replace $DOCKER_CONTAINER_NAME, $LOCAL_MAPPING_DIRECTORY, and $DOCKER_MAPPING_DIRECTORY to your own name and directories.
nvidia-docker run -it --entrypoint /bin/bash --shm-size 96g --name $DOCKER_CONTAINER_NAME -v $LOCAL_MAPPING_DIRECTORY:$DOCKER_MAPPING_DIRECTORY bkjbkj12/stylegan2_ada-pytorch1.8:1.0

nvidia-docker start $DOCKER_CONTAINER_NAME
nvidia-docker exec -it $DOCKER_CONTAINER_NAME bash

Then, go to the directory containing the source code

Dataset

The low-shot datasets are from DiffAug repository.

Pretrained checkpoint

Please download the source model (pretrained model) below. (Mainly used Primitives-PS)

Hardware

  • Mainly tested on Titan XP (12GB), V100 (32GB) and A6000 (48GB).

How to Run (Quick Start)

Pretraining To change the type of the pretraining dataset, comment out ant in these lines.

The file "noise.zip" is not required. (Just running the script will work well.)

CUDA_VISIBLE_DEVICES=$GPU_NUMBER python train.py --outdir=$OUTPUT_DIR --data=./data/noise.zip --gpus=1

Finetuning Change or locate the pretrained pkl file into the directory specified at the code.

CUDA_VISIBLE_DEVICES=$GPU_NUMBER python train.py --outdir=$OUTPUT_DIR --gpus=1 --data $DATA_DIR --kimg 400 --resume $PKL_NAME_TO_RESUME

Examples

Pretraining:
CUDA_VISIBLE_DEVICES=0 python train.py --outdir=Primitives-PS-Pretraining --data=./data/noise.zip --gpus=1

Finetuning:
CUDA_VISIBLE_DEVICES=0 python train.py --outdir=Primitives-PS-to-Obama --gpus=1 --data ../data/obama.zip --kimg 400 --resume Primitives-PS

Pretrained Model

Download

Google Drive

PinkNoise Primitives Primitives-S Primitives-PS
Obama Grumpy Cat Panda Bridge of Sigh
Medici fountain Temple of heaven Wuzhen Buildings

Synthetic Datasets

image

Results

Generating images from the same latent vector

SameVector

GIF

Because of the limitation on the file size, the model dose not fully converge (total 400K but .gif contains 120K iterations).

gif_1

Low-shot generation

low-shot

CIFAR

samples0

interpZ0

Note

This repository is built upon DiffAug.

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{Baek2022Commonality,
    author    = {Baek, Kyungjune and Shim, Hyunjung},
    title     = {Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    year      = {2022}
}
Owner
Ph. D. student at School of Integrated Technology in Yonsei Univ., Korea absence: KST 4.28 ~ 5.19
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos CarreƱo 108 Dec 27, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022