Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Overview

gMLP - Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Install

$ pip install g-mlp-pytorch

Usage

For masked language modelling

import torch
from g_mlp_pytorch import gMLP

model = gMLP(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 256
)

x = torch.randint(0, 20000, (1, 256))
emb = model(x) # (1, 256, 512)

For image classification

import torch
from g_mlp_pytorch import gMLPVision

model = gMLPVision(
    image_size = 256,
    patch_size = 16,
    num_classes = 1000,
    dim = 512,
    depth = 6
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

You can also add a tiny amount of attention (one-headed) to boost performance, as mentioned in the paper as aMLP, with the addition of one extra keyword attn_dim. This applies to both gMLPVision and gMLP

import torch
from g_mlp_pytorch import gMLPVision

model = gMLPVision(
    image_size = 256,
    patch_size = 16,
    num_classes = 1000,
    dim = 512,
    depth = 6,
    attn_dim = 64
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

Citations

@misc{liu2021pay,
    title   = {Pay Attention to MLPs}, 
    author  = {Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le},
    year    = {2021},
    eprint  = {2105.08050},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Custom image sizes?

    Custom image sizes?

    Hi, Thanks for your great (and very fast) contribution! I was wondering if you could help me figure out how to apply this to a different image size? It's not really an image, but rather a 2D dimensional tensor of 4096X100.

    I saw that I can change the number of channels, so I could just set channels to be 1. But I see that firstly - your implementation is for squared images, and secondly, it requires that image size should be devisable by patch size.

    Since you've written this implementation perhaps you could help me to adapt it for my needs? (and maybe other users for their cases).

    Maybe I could pad the length to be 128 so both would be devisable by 16 for example? but then where do I set different h, w ?

    Thanks.

    opened by danarte 3
  • Parameter count doesnt line up with paper

    Parameter count doesnt line up with paper

    Just a note (and correct me if I misunderstood the paper) -

    The parameter count for the Tiny gMLP doesnt line up with the param count from the paper for 30 layers and 128 dim and 6 ff_mult. Thats probably due to the doubling of parameters here - https://github.com/lucidrains/g-mlp-pytorch/blob/main/g_mlp_pytorch/g_mlp_pytorch.py#L111

    Halving this back to dim_ff + all 3 lines here need to halve their respective dims - https://github.com/lucidrains/g-mlp-pytorch/blob/main/g_mlp_pytorch/g_mlp_pytorch.py#L64-L66

    Then param count is roughly 5.5 M params.

    opened by titu1994 2
  • Add Support for Stochastic Depth

    Add Support for Stochastic Depth

    This PR adds support for stochastic depth, which is used in the paper for the vision experiments. I went ahead an added it to gMLP as well for completeness.

    I tried my best to match your style. Let me know if there are any problems, or if you want me to refactor anything.

    opened by mlw214 2
  • Don't you think this is more legible?

    Don't you think this is more legible?

    ` class SpatialGatingUnit(nn.Module): def init(self, dim, dim_seq, causal = False, act = nn.Identity(), init_eps = 1e-3): super().init() dim_out = dim // 2 self.causal = causal

        self.norm = nn.LayerNorm(dim_out)
        #self.proj = nn.Conv1d(dim_seq, dim_seq, 1)
    
        self.dim_seq = dim_seq
        self.w_ = nn.Parameter(torch.zeros(dim_seq, dim_seq), requires_grad=True)   ####
        self.b_ = nn.Parameter(torch.ones(dim_seq), requires_grad=True)  ####
    
        self.act = act
    
        init_eps /= dim_seq
        #nn.init.uniform_(self.proj.weight, -init_eps, init_eps)
        #nn.init.constant_(self.proj.bias, 1.)
    
    def forward(self, x, gate_res = None): # x -> bsz, len, hidden*6
        device, n = x.device, x.shape[1]
    
        res, gate = x.chunk(2, dim = -1)
        gate = self.norm(gate)
    
        weight, bias = self.w_, self.b_ # weight -> len, len, 1     bias -> len
    
        if self.causal:
            weight.unsqueeze(-1) # TODO
            weight, bias = weight[:n, :n], bias[:n]
            mask = torch.ones(weight.shape[:2], device = device).triu_(1).bool()
            weight = weight.masked_fill(mask[..., None], 0.)
            weight.squeeze(-1)# TODO
    
        gate = torch.matmul(weight, gate) + bias[None, :self.dim_seq, None]   # WZ + b
    
        #gate = F.conv1d(gate, weight, bias)   # WZ + b
    
        if exists(gate_res):
            gate = gate + gate_res
    
        return self.act(gate) * res
    

    `

    opened by ZIZUN 0
  • Potentially missing the high way pass

    Potentially missing the high way pass

    Hello,

    Maybe I missed it, but would you mind pointing out where the high way pass of the gMLP block is in the code? Based on the paper, there is a high way path (addition) between the input and the output. I couldn't find it in the gMLPBlock code.

    Thank you

    opened by Vincent-Li-9701 1
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022