Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Overview

gMLP - Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Install

$ pip install g-mlp-pytorch

Usage

For masked language modelling

import torch
from g_mlp_pytorch import gMLP

model = gMLP(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 256
)

x = torch.randint(0, 20000, (1, 256))
emb = model(x) # (1, 256, 512)

For image classification

import torch
from g_mlp_pytorch import gMLPVision

model = gMLPVision(
    image_size = 256,
    patch_size = 16,
    num_classes = 1000,
    dim = 512,
    depth = 6
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

You can also add a tiny amount of attention (one-headed) to boost performance, as mentioned in the paper as aMLP, with the addition of one extra keyword attn_dim. This applies to both gMLPVision and gMLP

import torch
from g_mlp_pytorch import gMLPVision

model = gMLPVision(
    image_size = 256,
    patch_size = 16,
    num_classes = 1000,
    dim = 512,
    depth = 6,
    attn_dim = 64
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

Citations

@misc{liu2021pay,
    title   = {Pay Attention to MLPs}, 
    author  = {Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le},
    year    = {2021},
    eprint  = {2105.08050},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Custom image sizes?

    Custom image sizes?

    Hi, Thanks for your great (and very fast) contribution! I was wondering if you could help me figure out how to apply this to a different image size? It's not really an image, but rather a 2D dimensional tensor of 4096X100.

    I saw that I can change the number of channels, so I could just set channels to be 1. But I see that firstly - your implementation is for squared images, and secondly, it requires that image size should be devisable by patch size.

    Since you've written this implementation perhaps you could help me to adapt it for my needs? (and maybe other users for their cases).

    Maybe I could pad the length to be 128 so both would be devisable by 16 for example? but then where do I set different h, w ?

    Thanks.

    opened by danarte 3
  • Parameter count doesnt line up with paper

    Parameter count doesnt line up with paper

    Just a note (and correct me if I misunderstood the paper) -

    The parameter count for the Tiny gMLP doesnt line up with the param count from the paper for 30 layers and 128 dim and 6 ff_mult. Thats probably due to the doubling of parameters here - https://github.com/lucidrains/g-mlp-pytorch/blob/main/g_mlp_pytorch/g_mlp_pytorch.py#L111

    Halving this back to dim_ff + all 3 lines here need to halve their respective dims - https://github.com/lucidrains/g-mlp-pytorch/blob/main/g_mlp_pytorch/g_mlp_pytorch.py#L64-L66

    Then param count is roughly 5.5 M params.

    opened by titu1994 2
  • Add Support for Stochastic Depth

    Add Support for Stochastic Depth

    This PR adds support for stochastic depth, which is used in the paper for the vision experiments. I went ahead an added it to gMLP as well for completeness.

    I tried my best to match your style. Let me know if there are any problems, or if you want me to refactor anything.

    opened by mlw214 2
  • Don't you think this is more legible?

    Don't you think this is more legible?

    ` class SpatialGatingUnit(nn.Module): def init(self, dim, dim_seq, causal = False, act = nn.Identity(), init_eps = 1e-3): super().init() dim_out = dim // 2 self.causal = causal

        self.norm = nn.LayerNorm(dim_out)
        #self.proj = nn.Conv1d(dim_seq, dim_seq, 1)
    
        self.dim_seq = dim_seq
        self.w_ = nn.Parameter(torch.zeros(dim_seq, dim_seq), requires_grad=True)   ####
        self.b_ = nn.Parameter(torch.ones(dim_seq), requires_grad=True)  ####
    
        self.act = act
    
        init_eps /= dim_seq
        #nn.init.uniform_(self.proj.weight, -init_eps, init_eps)
        #nn.init.constant_(self.proj.bias, 1.)
    
    def forward(self, x, gate_res = None): # x -> bsz, len, hidden*6
        device, n = x.device, x.shape[1]
    
        res, gate = x.chunk(2, dim = -1)
        gate = self.norm(gate)
    
        weight, bias = self.w_, self.b_ # weight -> len, len, 1     bias -> len
    
        if self.causal:
            weight.unsqueeze(-1) # TODO
            weight, bias = weight[:n, :n], bias[:n]
            mask = torch.ones(weight.shape[:2], device = device).triu_(1).bool()
            weight = weight.masked_fill(mask[..., None], 0.)
            weight.squeeze(-1)# TODO
    
        gate = torch.matmul(weight, gate) + bias[None, :self.dim_seq, None]   # WZ + b
    
        #gate = F.conv1d(gate, weight, bias)   # WZ + b
    
        if exists(gate_res):
            gate = gate + gate_res
    
        return self.act(gate) * res
    

    `

    opened by ZIZUN 0
  • Potentially missing the high way pass

    Potentially missing the high way pass

    Hello,

    Maybe I missed it, but would you mind pointing out where the high way pass of the gMLP block is in the code? Based on the paper, there is a high way path (addition) between the input and the output. I couldn't find it in the gMLPBlock code.

    Thank you

    opened by Vincent-Li-9701 1
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022