A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

Overview

A 2D Visual Localization Framework based on Essential Matrices

This repository provides implementation of our paper accepted at ICRA: To Learn or Not to Learn: Visual Localization from Essential Matrices

Pipeline

To use our code, first download the repository:

git clone [email protected]:GrumpyZhou/visloc-relapose.git

Setup Running Environment

We have tested the code on Linux Ubuntu 16.04.6 under following environments:

Python 3.6 / 3.7
Pytorch 0.4.0 / 1.0 / 1.1 
CUDA 8.0 + CUDNN 8.0v5.1
CUDA 10.0 + CUDNN 10.0v7.5.1.10

The setting we used in the paper is:
Python 3.7 + Pytorch 1.1 + CUDA 10.0 + CUDNN 10.0v7.5.1.10

We recommend to use Anaconda to manage packages. Run following lines to automatically setup a ready environment for our code.

conda env create -f environment.yml  # Notice this one installs latest pytorch version.
conda activte relapose

Otherwise, one can try to download all required packages separately according to their offical documentation.

Prepare Datasets

Our code is flexible for evaluation on various localization datasets. We use Cambridge Landmarks dataset as an example to show how to prepare a dataset:

  1. Create data/ folder
  2. Download original Cambridge Landmarks Dataset and extract it to $CAMBRIDGE_DIR$.
  3. Construct the following folder structure in order to conveniently run all scripts in this repo:
    cd visloc-relapose/
    mkdir data
    mkdir data/datasets_original
    cd data/original_datasets
    ln -s $CAMBRIDGE_DIR$ CambridgeLandmarks
    
  4. Download our pairs for training, validation and testing. About the format of our pairs, check readme.
  5. Place the pairs to corresponding folder under data/datasets_original/CambridgeLandmarks.
  6. Pre-save resized 480 images to speed up data loading time for regression models (Optional, but Recommended)
    cd visloc-relapose/
    python -m utils.datasets.resize_dataset \
    	--base_dir data/datasets_original/CambridgeLandmarks \ 
    	--save_dir=data/datasets_480/CambridgeLandmarks \
    	--resize 480  --copy_txt True 
    
  7. Test your setup by visualizing the data using notebooks/data_loading.ipynb.

7Scenes Datasets

We follow the camera pose label convention of Cambridge Landmarks dataset. Similarly, you can download our pairs for 7Scenes. For other datasets, contact me for information about preprocessing and pair generation.

Feature-based: SIFT + 5-Point Solver

We use the SIFT feature extractor and feature matcher in colmap. One can follow the installation guide to install colmap. We save colmap outputs in database format, see explanation.

Preparing SIFT features

Execute following commands to run SIFT extraction and matching on CambridgeLandmarks:

cd visloc-relapose/
bash prepare_colmap_data.sh  CambridgeLandmarks

Here CambridgeLandmarks is the folder name that is consistent with the dataset folder. So you can also use other dataset names such as 7Scenes if you have prepared the dataset properly in advance.

Evaluate SIFT within our pipeline

Example to run sift+5pt on Cambridge Landmarks:

python -m pipeline.sift_5pt \
        --data_root 'data/datasets_original/' \
        --dataset 'CambridgeLandmarks' \
        --pair_txt 'test_pairs.5nn.300cm50m.vlad.minmax.txt' \
        --cv_ransac_thres 0.5\
        --loc_ransac_thres 5\
        -odir 'output/sift_5pt'\
        -log 'results.dvlad.minmax.txt'

More evaluation examples see: sift_5pt.sh. Check example outputs Visualize SIFT correspondences using notebooks/visualize_sift_matches.ipynb.

Learning-based: Direct Regression via EssNet

The pipeline.relapose_regressor module can be used for both training or testing our regression networks defined under networks/, e.g., EssNet, NCEssNet, RelaPoseNet... We provide training and testing examples in regression.sh. The module allows flexible variations of the setting. For more details about the module options, run python -m pipeline.relapose_regressor -h.

Training

Here we show an example how to train an EssNet model on ShopFacade scene.

python -m pipeline.relapose_regressor \
        --gpu 0 -b 16 --train -val 20 --epoch 200 \
        --data_root 'data/datasets_480' -ds 'CambridgeLandmarks' \
        --incl_sces 'ShopFacade' \
        -rs 480 --crop 448 --normalize \
        --ess_proj --network 'EssNet' --with_ess\
        --pair 'train_pairs.30nn.medium.txt' -vpair 'val_pairs.5nn.medium.txt' \
        -lr 0.0001 -wd 0.000001 \
        --odir  'output/regression_models/example' \
        -vp 9333 -vh 'localhost' -venv 'main' -vwin 'example.shopfacade' 

This command produces outputs are available online here.

Visdom (optional)

As you see in the example above, we use Visdom server to visualize the training process. One can adapt the meters to plot inside utils/common/visdom.py. If you DON'T want to use visdom, just remove the last line -vp 9333 -vh 'localhost' -venv 'main' -vwin 'example.shopfacade'.

Trained models and weights

We release all trained models that are used in our paper. One can download them from pretrained regression models. We also provide some pretrained weights on MegaDepth/ScanNet.

Testing

Here is a piece of code to test the example model above.

python -m pipeline.relapose_regressor \
        --gpu 2 -b 16  --test \
        --data_root 'data/datasets_480' -ds 'CambridgeLandmarks' \
        --incl_sces 'ShopFacade' \
        -rs 480 --crop 448 --normalize\
        --ess_proj --network 'EssNet'\
        --pair 'test_pairs.5nn.300cm50m.vlad.minmax.txt'\
        --resume 'output/regression_models/example/ckpt/checkpoint_140_0.36m_1.97deg.pth' \
        --odir 'output/regression_models/example'

This testing code outputs are shown in test_results.txt. For convenience, we also provide notebooks/eval_regression_models.ipynb to perform evaluation.

Hybrid: Learnable Matching + 5-Point Solver

In this method, the code of the NCNet is taken from the original implementation https://github.com/ignacio-rocco/ncnet. We use their pre-trained model but we only use the weights for neighbourhood consensus(NC-Matching), i.e., the 4d-conv layer weights. For convenience, you can download our parsed version nc_ivd_5ep.pth. The models for feature extractor initialization needs to be downloaded from pretrained regression models in advance, if you want to test them.

Testing example for NC-EssNet(7S)+NCM+5Pt (Paper.Tab2)

In this example, we use NCEssNet trained on 7Scenes for 60 epochs to extract features and use the pre-trained NC Matching layer to get the point matches. Finally the 5 point solver calculates the essential matrix. The model is evaluated on CambridgeLandmarks.

# 
python -m pipeline.ncmatch_5pt \
    --data_root 'data/datasets_original' \
    --dataset 'CambridgeLandmarks' \
    --pair_txt 'test_pairs.5nn.300cm50m.vlad.minmax.txt' \
    --cv_ransac_thres 4.0\
    --loc_ransac_thres 15\
    --feat 'output/regression_models/448_normalize/nc-essnet/7scenes/checkpoint_60_0.04m_1.62deg.pth'\
    --ncn 'output/pretrained_weights/nc_ivd_5ep.pth' \    
    --posfix 'essncn_7sc_60ep+ncn'\
    --match_save_root 'output/ncmatch_5pt/saved_matches'\
    --ncn_thres 0.9 \
    --gpu 2\
    -o 'output/ncmatch_5pt/loc_results/Cambridge/essncn_7sc_60ep+ncn.txt' 

Example outputs is available in essncn_7sc_60ep+ncn.txt. If you don't want to save THE intermediate matches extracted, remove THE option --match_save_root.

Owner
Qunjie Zhou
PhD Candidate at the Dynamic Vision and Learning Group.
Qunjie Zhou
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022