A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

Overview

A 2D Visual Localization Framework based on Essential Matrices

This repository provides implementation of our paper accepted at ICRA: To Learn or Not to Learn: Visual Localization from Essential Matrices

Pipeline

To use our code, first download the repository:

git clone [email protected]:GrumpyZhou/visloc-relapose.git

Setup Running Environment

We have tested the code on Linux Ubuntu 16.04.6 under following environments:

Python 3.6 / 3.7
Pytorch 0.4.0 / 1.0 / 1.1 
CUDA 8.0 + CUDNN 8.0v5.1
CUDA 10.0 + CUDNN 10.0v7.5.1.10

The setting we used in the paper is:
Python 3.7 + Pytorch 1.1 + CUDA 10.0 + CUDNN 10.0v7.5.1.10

We recommend to use Anaconda to manage packages. Run following lines to automatically setup a ready environment for our code.

conda env create -f environment.yml  # Notice this one installs latest pytorch version.
conda activte relapose

Otherwise, one can try to download all required packages separately according to their offical documentation.

Prepare Datasets

Our code is flexible for evaluation on various localization datasets. We use Cambridge Landmarks dataset as an example to show how to prepare a dataset:

  1. Create data/ folder
  2. Download original Cambridge Landmarks Dataset and extract it to $CAMBRIDGE_DIR$.
  3. Construct the following folder structure in order to conveniently run all scripts in this repo:
    cd visloc-relapose/
    mkdir data
    mkdir data/datasets_original
    cd data/original_datasets
    ln -s $CAMBRIDGE_DIR$ CambridgeLandmarks
    
  4. Download our pairs for training, validation and testing. About the format of our pairs, check readme.
  5. Place the pairs to corresponding folder under data/datasets_original/CambridgeLandmarks.
  6. Pre-save resized 480 images to speed up data loading time for regression models (Optional, but Recommended)
    cd visloc-relapose/
    python -m utils.datasets.resize_dataset \
    	--base_dir data/datasets_original/CambridgeLandmarks \ 
    	--save_dir=data/datasets_480/CambridgeLandmarks \
    	--resize 480  --copy_txt True 
    
  7. Test your setup by visualizing the data using notebooks/data_loading.ipynb.

7Scenes Datasets

We follow the camera pose label convention of Cambridge Landmarks dataset. Similarly, you can download our pairs for 7Scenes. For other datasets, contact me for information about preprocessing and pair generation.

Feature-based: SIFT + 5-Point Solver

We use the SIFT feature extractor and feature matcher in colmap. One can follow the installation guide to install colmap. We save colmap outputs in database format, see explanation.

Preparing SIFT features

Execute following commands to run SIFT extraction and matching on CambridgeLandmarks:

cd visloc-relapose/
bash prepare_colmap_data.sh  CambridgeLandmarks

Here CambridgeLandmarks is the folder name that is consistent with the dataset folder. So you can also use other dataset names such as 7Scenes if you have prepared the dataset properly in advance.

Evaluate SIFT within our pipeline

Example to run sift+5pt on Cambridge Landmarks:

python -m pipeline.sift_5pt \
        --data_root 'data/datasets_original/' \
        --dataset 'CambridgeLandmarks' \
        --pair_txt 'test_pairs.5nn.300cm50m.vlad.minmax.txt' \
        --cv_ransac_thres 0.5\
        --loc_ransac_thres 5\
        -odir 'output/sift_5pt'\
        -log 'results.dvlad.minmax.txt'

More evaluation examples see: sift_5pt.sh. Check example outputs Visualize SIFT correspondences using notebooks/visualize_sift_matches.ipynb.

Learning-based: Direct Regression via EssNet

The pipeline.relapose_regressor module can be used for both training or testing our regression networks defined under networks/, e.g., EssNet, NCEssNet, RelaPoseNet... We provide training and testing examples in regression.sh. The module allows flexible variations of the setting. For more details about the module options, run python -m pipeline.relapose_regressor -h.

Training

Here we show an example how to train an EssNet model on ShopFacade scene.

python -m pipeline.relapose_regressor \
        --gpu 0 -b 16 --train -val 20 --epoch 200 \
        --data_root 'data/datasets_480' -ds 'CambridgeLandmarks' \
        --incl_sces 'ShopFacade' \
        -rs 480 --crop 448 --normalize \
        --ess_proj --network 'EssNet' --with_ess\
        --pair 'train_pairs.30nn.medium.txt' -vpair 'val_pairs.5nn.medium.txt' \
        -lr 0.0001 -wd 0.000001 \
        --odir  'output/regression_models/example' \
        -vp 9333 -vh 'localhost' -venv 'main' -vwin 'example.shopfacade' 

This command produces outputs are available online here.

Visdom (optional)

As you see in the example above, we use Visdom server to visualize the training process. One can adapt the meters to plot inside utils/common/visdom.py. If you DON'T want to use visdom, just remove the last line -vp 9333 -vh 'localhost' -venv 'main' -vwin 'example.shopfacade'.

Trained models and weights

We release all trained models that are used in our paper. One can download them from pretrained regression models. We also provide some pretrained weights on MegaDepth/ScanNet.

Testing

Here is a piece of code to test the example model above.

python -m pipeline.relapose_regressor \
        --gpu 2 -b 16  --test \
        --data_root 'data/datasets_480' -ds 'CambridgeLandmarks' \
        --incl_sces 'ShopFacade' \
        -rs 480 --crop 448 --normalize\
        --ess_proj --network 'EssNet'\
        --pair 'test_pairs.5nn.300cm50m.vlad.minmax.txt'\
        --resume 'output/regression_models/example/ckpt/checkpoint_140_0.36m_1.97deg.pth' \
        --odir 'output/regression_models/example'

This testing code outputs are shown in test_results.txt. For convenience, we also provide notebooks/eval_regression_models.ipynb to perform evaluation.

Hybrid: Learnable Matching + 5-Point Solver

In this method, the code of the NCNet is taken from the original implementation https://github.com/ignacio-rocco/ncnet. We use their pre-trained model but we only use the weights for neighbourhood consensus(NC-Matching), i.e., the 4d-conv layer weights. For convenience, you can download our parsed version nc_ivd_5ep.pth. The models for feature extractor initialization needs to be downloaded from pretrained regression models in advance, if you want to test them.

Testing example for NC-EssNet(7S)+NCM+5Pt (Paper.Tab2)

In this example, we use NCEssNet trained on 7Scenes for 60 epochs to extract features and use the pre-trained NC Matching layer to get the point matches. Finally the 5 point solver calculates the essential matrix. The model is evaluated on CambridgeLandmarks.

# 
python -m pipeline.ncmatch_5pt \
    --data_root 'data/datasets_original' \
    --dataset 'CambridgeLandmarks' \
    --pair_txt 'test_pairs.5nn.300cm50m.vlad.minmax.txt' \
    --cv_ransac_thres 4.0\
    --loc_ransac_thres 15\
    --feat 'output/regression_models/448_normalize/nc-essnet/7scenes/checkpoint_60_0.04m_1.62deg.pth'\
    --ncn 'output/pretrained_weights/nc_ivd_5ep.pth' \    
    --posfix 'essncn_7sc_60ep+ncn'\
    --match_save_root 'output/ncmatch_5pt/saved_matches'\
    --ncn_thres 0.9 \
    --gpu 2\
    -o 'output/ncmatch_5pt/loc_results/Cambridge/essncn_7sc_60ep+ncn.txt' 

Example outputs is available in essncn_7sc_60ep+ncn.txt. If you don't want to save THE intermediate matches extracted, remove THE option --match_save_root.

Owner
Qunjie Zhou
PhD Candidate at the Dynamic Vision and Learning Group.
Qunjie Zhou
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022