Implementation of Axial attention - attending to multi-dimensional data efficiently

Overview

Axial Attention

PyPI version

Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has worked wonders for me and many other researchers.

Simply add some positional encoding to your data and pass it into this handy class, specifying which dimension is considered the embedding, and how many axial dimensions to rotate through. All the permutating, reshaping, will be taken care of for you.

This paper was actually rejected on the basis of being too simple. And yet, it has since been used successfully in a number of applications, among those weather prediction, all-attention image segmentation. Just goes to show.

Install

$ pip install axial_attention

Usage

Image

import torch
from axial_attention import AxialAttention

img = torch.randn(1, 3, 256, 256)

attn = AxialAttention(
    dim = 3,               # embedding dimension
    dim_index = 1,         # where is the embedding dimension
    dim_heads = 32,        # dimension of each head. defaults to dim // heads if not supplied
    heads = 1,             # number of heads for multi-head attention
    num_dimensions = 2,    # number of axial dimensions (images is 2, video is 3, or more)
    sum_axial_out = True   # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true
)

attn(img) # (1, 3, 256, 256)

Channel-last image latents

import torch
from axial_attention import AxialAttention

img = torch.randn(1, 20, 20, 512)

attn = AxialAttention(
    dim = 512,           # embedding dimension
    dim_index = -1,      # where is the embedding dimension
    heads = 8,           # number of heads for multi-head attention
    num_dimensions = 2,  # number of axial dimensions (images is 2, video is 3, or more)
)

attn(img) # (1, 20, 20 ,512)

Video

import torch
from axial_attention import AxialAttention

video = torch.randn(1, 5, 128, 256, 256)

attn = AxialAttention(
    dim = 128,           # embedding dimension
    dim_index = 2,       # where is the embedding dimension
    heads = 8,           # number of heads for multi-head attention
    num_dimensions = 3,  # number of axial dimensions (images is 2, video is 3, or more)
)

attn(video) # (1, 5, 128, 256, 256)

Image Transformer, with reversible network

import torch
from torch import nn
from axial_attention import AxialImageTransformer

conv1x1 = nn.Conv2d(3, 128, 1)

transformer = AxialImageTransformer(
    dim = 128,
    depth = 12,
    reversible = True
)

img = torch.randn(1, 3, 512, 512)

transformer(conv1x1(img)) # (1, 3, 512, 512)

With axial positional embedding

import torch
from axial_attention import AxialAttention, AxialPositionalEmbedding

img = torch.randn(1, 512, 20, 20)

attn = AxialAttention(
    dim = 512,
    heads = 8,
    dim_index = 1
)

pos_emb = AxialPositionalEmbedding(
    dim = 512,
    shape = (20, 20)
)

img = pos_emb(img)  # (1, 512, 20, 20)  - now positionally embedded
img = attn(img)     # (1, 512, 20, 20)

Citation

@misc{ho2019axial,
    title  = {Axial Attention in Multidimensional Transformers},
    author = {Jonathan Ho and Nal Kalchbrenner and Dirk Weissenborn and Tim Salimans},
    year   = {2019},
    archivePrefix = {arXiv}
}
@misc{wang2020axialdeeplab,
    title   = {Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation},
    author  = {Huiyu Wang and Yukun Zhu and Bradley Green and Hartwig Adam and Alan Yuille and Liang-Chieh Chen},
    year    = {2020},
    eprint  = {2003.07853},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@inproceedings{huang2019ccnet,
    title   = {Ccnet: Criss-cross attention for semantic segmentation},
    author  = {Huang, Zilong and Wang, Xinggang and Huang, Lichao and Huang, Chang and Wei, Yunchao and Liu, Wenyu},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    pages   = {603--612},
    year    = {2019}
}
Comments
  • Reimplementation of image modeling results in AXIAL ATTENTION IN MULTIDIMENSIONAL TRANSFORMERS.

    Reimplementation of image modeling results in AXIAL ATTENTION IN MULTIDIMENSIONAL TRANSFORMERS.

    Hi, this is a nice paper. How can I use your shared code to reimplement the image modeling task on ImageNet 32x32?

    Thanks. Looking forward to your reply.

    opened by liujiaheng 3
  • AxialPositionalEmbedding

    AxialPositionalEmbedding

    Would you be able to provide an example of how to add the positional encoding with the AxialPositionalEmbedding class or explain what the emb_dim, emb_dim_index, and dimensions arguments are specifically? Thanks for the repo!

    opened by dansola 2
  • Problem of ParameterList with nn.DataParallel

    Problem of ParameterList with nn.DataParallel

    https://github.com/lucidrains/axial-attention/blob/a1a483c0f4a3922eef8f9a857dc1a802523bd437/axial_attention/axial_attention.py#L100

    This line would lead to the following issue: "UserWarning: nn.ParameterList is being used with DataParallel but this is not supported. This list will appear empty for the models replicated on each GPU except the original one."

    It is a known issue here

    The simple solution should be to store the Parameters directly on the Module.

    class AxialPositionalEmbedding(nn.Module):
        def __init__(self, dim, shape, emb_dim_index = 1):
            super().__init__()
            parameters = []
            total_dimensions = len(shape) + 2
            ax_dim_indexes = [i for i in range(1, total_dimensions) if i != emb_dim_index]
            
            for i, (axial_dim, axial_dim_index) in enumerate(zip(shape, ax_dim_indexes)):
                shape = [1] * total_dimensions
                shape[emb_dim_index] = dim
                shape[axial_dim_index] = axial_dim
                parameter = nn.Parameter(torch.randn(*shape))
                setattr(self, f'param_{i}', parameter)
                setattr(self, f'param_num', i+1)
    
        def forward(self, x):
            for i in range(self.param_num):
                x = x + getattr(self, f'param_{i}')
            return x
    
    opened by resuly 1
  • Positional embeddings for different image sizes

    Positional embeddings for different image sizes

    Hi, once again thanks for your great work! Since I want to use the axial attention with positional embedding for unknown image sizes (But I know the max size), I was wondering if you think that changing https://github.com/lucidrains/axial-attention/blob/master/axial_attention/axial_attention.py#L104 to

    for cnt, param in enumerate(self.params):
        x = x + param[([slice(None)] * (cnt + 2) + [slice(x.shape[cnt + 2])])]
    

    does the right thing. I can now do this

    v = AxialImageTransformer(64, depth = 1, axial_pos_emb_shape = (64,64), dim_index = 1)       
    t1 = torch.randn(2, 64, 17, 16)
    t2 = torch.randn(2, 64, 13, 18)
    t3 = torch.randn(2, 64, 64, 64)
    print(v(t1).shape)
    print(v(t2).shape)
    print(v(t3).shape)
    Output:
    torch.Size([2, 64, 17, 16])
    torch.Size([2, 64, 13, 18])
    torch.Size([2, 64, 64, 64])
    

    I think that makes it easier to integrate it in fully convolutional nets for multi scale training.

    opened by PhilippMarquardt 1
  • User Warning: Mixed memory format inputs detected

    User Warning: Mixed memory format inputs detected

    At site-packages/axial_attention/axial_attention.py:176: UserWarning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. ( Triggered internally at /opt/conda/conda-bld/pytorch_1595629427286/work/aten/src/ATen/native/TensorIterator.cpp:918.) return sum(map(lambda axial_attn: axial_attn(x), self.axial_attentions))

    I am using latest axial_attention (v0.4) and Pytorch 1.6.0

    Code:

    import torch
    from axial_attention import AxialAttention
    
    img = torch.randn(1, 24, 64, 64)
    
    attn = AxialAttention(
        dim = 24,               # embedding dimension
        dim_index = 1,         # where is the embedding dimension
        dim_heads = 32,        # dimension of each head. defaults to dim // heads if not supplied
        heads = 8,             # number of heads for multi-head attention
        num_dimensions = 2,    # number of axial dimensions (images is 2, video is 3, or more)
        sum_axial_out = True   # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true
    )
    
    out= attn(img) 
    
    

    Will it affect trainings and inference?

    opened by lokeshkvn 1
  • Examples for image sequence/video

    Examples for image sequence/video

    Hello, Do you have examples of integrating this on image sequences? I am trying to get rid of ConvLSTM's for encoding sequence of images and AxialAttention may be a good starting point. Do you have an exmaple/notebook that I could look to integrate this on my type of data? Thank you for this amazing work. Thomas

    opened by tcapelle 1
  • Ask a question

    Ask a question

    I'm interested to your excellent work,but I'm new to pytorch,can I ask a question where is the start position in the code that i will understand whole project from it ?Thx for your reply

    opened by meiguoofa 0
  • Hi, I have a problem

    Hi, I have a problem

    import torch from axial_attention import AxialAttention

    img = torch.randn(1, 3, 256, 256)

    attn = AxialAttention( dim = 3, # embedding dimension dim_index = 1, # where is the embedding dimension dim_heads = 32, # dimension of each head. defaults to dim // heads if not supplied heads = 1, # number of heads for multi-head attention num_dimensions = 2, # number of axial dimensions (images is 2, video is 3, or more) sum_axial_out = True # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true )

    attn(img) # (1, 3, 256, 256)

    Thanks for your great project, I want to ask if my image is one channel image will influence the num_dimensions value?

    opened by meiguoofa 0
  • Extracting attention maps

    Extracting attention maps

    Hi there,

    Excellent project!

    I'm using axial-attention with video (1, 5, 128, 256, 256) and sum_axial_out=True, and I wish to visualise the attention maps.

    Essentially, given my video, and two frame indices frame_a_idx and frame_b_idx, I need to extract the attention map over frame_b to a chosen pixel (x, y) in frame_a (after the axial sum).

    My understanding is that I should be able to reshape the dots (after softmax) according to the permutations in calculate_permutations, then sum these permuted dots together to form a final attention score tensor of an accessible shape, thus ready for visualisation.

    I am slightly stuck due to the numerous axial permutations and shape mismatches. What I am doing is as follows:

    In SelfAttention.forward():

    dots_reshaped = dots.reshape(b, h, t, t)
    return out, dots_reshaped
    

    In PermuteToFrom.forward():

     # attention
    axial, dots = self.fn(axial, **kwargs)
    
    # restore to original shape and permutation
    axial = axial.reshape(*shape)
    axial = axial.permute(*self.inv_permutation).contiguous()
    dots = dots.reshape(*shape[:3], *dots.shape[1:])
    

    However, I am unsure of how to un-permute the dots appropriately such that all resulting “axes” (of different sizes) can be summed. If you have suggestions or code for doing so, it would be very much appreciated, thanks!

    opened by vibrant-galaxy 3
Releases(0.6.1)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
yufan 81 Dec 08, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022