MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

Overview

MoViNet-pytorch

Open In Colab Paper

Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition.
Authors: Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, Boqing Gong (Google Research)
[Authors' Implementation]

Stream Buffer

stream buffer

Clean stream buffer

It is required to clean the buffer after all the clips of the same video have been processed.

model.clean_activation_buffers()

Usage

Open In Colab
Click on "Open in Colab" to open an example of training on HMDB-51

installation

pip install git+https://github.com/Atze00/MoViNet-pytorch.git

How to build a model

Use causal = True to use the model with stream buffer, causal = False will use standard convolutions

from movinets import MoViNet
from movinets.config import _C

MoViNetA0 = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
MoViNetA1 = MoViNet(_C.MODEL.MoViNetA1, causal = True, pretrained = True )
...
Load weights

Use pretrained = True to use the model with pretrained weights

    """
    If pretrained is True:
        num_classes is set to 600,
        conv_type is set to "3d" if causal is False, "2plus1d" if causal is True
        tf_like is set to True
    """
model = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
model = MoViNet(_C.MODEL.MoViNetA0, causal = False, pretrained = True )

Training loop examples

Training loop with stream buffer

def train_iter(model, optimz, data_load, n_clips = 5, n_clip_frames=8):
    """
    In causal mode with stream buffer a single video is fed to the network
    using subclips of lenght n_clip_frames. 
    n_clips*n_clip_frames should be equal to the total number of frames presents
    in the video.
    
    n_clips : number of clips that are used
    n_clip_frames : number of frame contained in each clip
    """
    
    #clean the buffer of activations
    model.clean_activation_buffers()
    optimz.zero_grad()
    for i, data, target in enumerate(data_load):
        #backward pass for each clip
        for j in range(n_clips):
          out = F.log_softmax(model(data[:,:,(n_clip_frames)*(j):(n_clip_frames)*(j+1)]), dim=1)
          loss = F.nll_loss(out, target)/n_clips
          loss.backward()
        optimz.step()
        optimz.zero_grad()
        
        #clean the buffer of activations
        model.clean_activation_buffers()

Training loop with standard convolutions

def train_iter(model, optimz, data_load):

    optimz.zero_grad()
    for i, (data,_ , target) in enumerate(data_load):
        out = F.log_softmax(model(data), dim=1)
        loss = F.nll_loss(out, target)
        loss.backward()
        optimz.step()
        optimz.zero_grad()

Pretrained models

Weights

The weights are loaded from the tensorflow models released by the authors, trained on kinetics.

Base Models

Base models implement standard 3D convolutions without stream buffers.

Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape
MoViNet-A0-Base 72.28 90.92 50 x 172 x 172
MoViNet-A1-Base 76.69 93.40 50 x 172 x 172
MoViNet-A2-Base 78.62 94.17 50 x 224 x 224
MoViNet-A3-Base 81.79 95.67 120 x 256 x 256
MoViNet-A4-Base 83.48 96.16 80 x 290 x 290
MoViNet-A5-Base 84.27 96.39 120 x 320 x 320
Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape**
MoViNet-A0-Stream 72.05 90.63 50 x 172 x 172
MoViNet-A1-Stream 76.45 93.25 50 x 172 x 172
MoViNet-A2-Stream 78.40 94.05 50 x 224 x 224

**In streaming mode, the number of frames correspond to the total accumulated duration of the 10-second clip.

*Accuracy reported on the official repository for the dataset kinetics 600, It has not been tested by me. It should be the same since the tf models and the reimplemented pytorch models output the same results [Test].

I currently haven't tested the speed of the streaming models, feel free to test and contribute.

Status

Currently are available the pretrained models for the following architectures:

  • MoViNetA1-BASE
  • MoViNetA1-STREAM
  • MoViNetA2-BASE
  • MoViNetA2-STREAM
  • MoViNetA3-BASE
  • MoViNetA3-STREAM
  • MoViNetA4-BASE
  • MoViNetA4-STREAM
  • MoViNetA5-BASE
  • MoViNetA5-STREAM

I currently have no plans to include streaming version of A3,A4,A5. Those models are too slow for most mobile applications.

Testing

I recommend to create a new environment for testing and run the following command to install all the required packages:
pip install -r tests/test_requirements.txt

Citations

@article{kondratyuk2021movinets,
  title={MoViNets: Mobile Video Networks for Efficient Video Recognition},
  author={Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Matthew Brown, and Boqing Gong},
  journal={arXiv preprint arXiv:2103.11511},
  year={2021}
}
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022