MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

Overview

MoViNet-pytorch

Open In Colab Paper

Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition.
Authors: Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, Boqing Gong (Google Research)
[Authors' Implementation]

Stream Buffer

stream buffer

Clean stream buffer

It is required to clean the buffer after all the clips of the same video have been processed.

model.clean_activation_buffers()

Usage

Open In Colab
Click on "Open in Colab" to open an example of training on HMDB-51

installation

pip install git+https://github.com/Atze00/MoViNet-pytorch.git

How to build a model

Use causal = True to use the model with stream buffer, causal = False will use standard convolutions

from movinets import MoViNet
from movinets.config import _C

MoViNetA0 = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
MoViNetA1 = MoViNet(_C.MODEL.MoViNetA1, causal = True, pretrained = True )
...
Load weights

Use pretrained = True to use the model with pretrained weights

    """
    If pretrained is True:
        num_classes is set to 600,
        conv_type is set to "3d" if causal is False, "2plus1d" if causal is True
        tf_like is set to True
    """
model = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
model = MoViNet(_C.MODEL.MoViNetA0, causal = False, pretrained = True )

Training loop examples

Training loop with stream buffer

def train_iter(model, optimz, data_load, n_clips = 5, n_clip_frames=8):
    """
    In causal mode with stream buffer a single video is fed to the network
    using subclips of lenght n_clip_frames. 
    n_clips*n_clip_frames should be equal to the total number of frames presents
    in the video.
    
    n_clips : number of clips that are used
    n_clip_frames : number of frame contained in each clip
    """
    
    #clean the buffer of activations
    model.clean_activation_buffers()
    optimz.zero_grad()
    for i, data, target in enumerate(data_load):
        #backward pass for each clip
        for j in range(n_clips):
          out = F.log_softmax(model(data[:,:,(n_clip_frames)*(j):(n_clip_frames)*(j+1)]), dim=1)
          loss = F.nll_loss(out, target)/n_clips
          loss.backward()
        optimz.step()
        optimz.zero_grad()
        
        #clean the buffer of activations
        model.clean_activation_buffers()

Training loop with standard convolutions

def train_iter(model, optimz, data_load):

    optimz.zero_grad()
    for i, (data,_ , target) in enumerate(data_load):
        out = F.log_softmax(model(data), dim=1)
        loss = F.nll_loss(out, target)
        loss.backward()
        optimz.step()
        optimz.zero_grad()

Pretrained models

Weights

The weights are loaded from the tensorflow models released by the authors, trained on kinetics.

Base Models

Base models implement standard 3D convolutions without stream buffers.

Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape
MoViNet-A0-Base 72.28 90.92 50 x 172 x 172
MoViNet-A1-Base 76.69 93.40 50 x 172 x 172
MoViNet-A2-Base 78.62 94.17 50 x 224 x 224
MoViNet-A3-Base 81.79 95.67 120 x 256 x 256
MoViNet-A4-Base 83.48 96.16 80 x 290 x 290
MoViNet-A5-Base 84.27 96.39 120 x 320 x 320
Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape**
MoViNet-A0-Stream 72.05 90.63 50 x 172 x 172
MoViNet-A1-Stream 76.45 93.25 50 x 172 x 172
MoViNet-A2-Stream 78.40 94.05 50 x 224 x 224

**In streaming mode, the number of frames correspond to the total accumulated duration of the 10-second clip.

*Accuracy reported on the official repository for the dataset kinetics 600, It has not been tested by me. It should be the same since the tf models and the reimplemented pytorch models output the same results [Test].

I currently haven't tested the speed of the streaming models, feel free to test and contribute.

Status

Currently are available the pretrained models for the following architectures:

  • MoViNetA1-BASE
  • MoViNetA1-STREAM
  • MoViNetA2-BASE
  • MoViNetA2-STREAM
  • MoViNetA3-BASE
  • MoViNetA3-STREAM
  • MoViNetA4-BASE
  • MoViNetA4-STREAM
  • MoViNetA5-BASE
  • MoViNetA5-STREAM

I currently have no plans to include streaming version of A3,A4,A5. Those models are too slow for most mobile applications.

Testing

I recommend to create a new environment for testing and run the following command to install all the required packages:
pip install -r tests/test_requirements.txt

Citations

@article{kondratyuk2021movinets,
  title={MoViNets: Mobile Video Networks for Efficient Video Recognition},
  author={Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Matthew Brown, and Boqing Gong},
  journal={arXiv preprint arXiv:2103.11511},
  year={2021}
}
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022