Meta Learning Backpropagation And Improving It (VSML)

Overview

Meta Learning Backpropagation And Improving It (VSML)

This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021.

Many concepts have been proposed for meta learning with neural networks (NNs), e.g., NNs that learn to reprogram fast weights, Hebbian plasticity, learned learning rules, and meta recurrent NNs. Our Variable Shared Meta Learning (VSML) unifies the above and demonstrates that simple weight-sharing and sparsity in an NN is sufficient to express powerful learning algorithms (LAs) in a reusable fashion. A simple implementation of VSML where the weights of a neural network are replaced by tiny LSTMs allows for implementing the backpropagation LA solely by running in forward-mode. It can even meta learn new LAs that differ from online backpropagation and generalize to datasets outside of the meta training distribution without explicit gradient calculation. Introspection reveals that our meta learned LAs learn through fast association in a way that is qualitatively different from gradient descent.

Installation

Create a virtual env

python3 -m venv venv
. venv/bin/activate

Install pip dependencies

pip3 install --upgrade pip wheel setuptools
pip3 install -r requirements.txt

Initialize weights and biases

wandb init

Inspect your results at https://wandb.ai/.

Run instructions

Non distributed

For any algorithm that does not require multiple workers.

python3 launch.py --config_files CONFIG_FILES --config arg1=val1 arg2=val2

Distributed

For any algorithm that does require multiple workers

GPU_COUNT=4 mpirun -n NUM_WORKERS python3 assign_gpu.py python3 launch.py

where NUM_WORKERS is the number of workers to run. The assign_gpu python script distributes the mpi workers evenly over the specified GPUs

Alternatively, specify the CUDA_VISIBLE_DEVICES instead of GPU_COUNT env variable:

CUDA_VISIBLE_DEVICES=0,2,3 mpirun -n NUM_WORKERS python3 assign_gpu.py python3 launch.py

Slurm-based cluster

Modify slurm/schedule.sh and slurm/job.sh to suit your environment.

bash slurm/schedule.sh --nodes=7 --ntasks-per-node=12 -- python3 launch.py --config_files CONFIG_FILES

If only a single worker is required (non-distributed), set --nodes=1 and --ntasks-per-node=1.

Remote (via ssh)

Modify ssh/schedule.sh to suit your environment. Requires gpustat in .local/bin/gpustat, via pip3 install --user gpustat. Also install tmux and mpirun.

bash ssh/schedule.sh --host HOST_NAME --nodes=7 --ntasks-per-node=12 -- python3 launch.py --config_files CONFIG_FILES

Example training runs

Section 4.2 Figure 6

VSML

slurm/schedule.py --nodes=128 --time 04:00:00 -- python3 launch.py --config_files configs/rand_proj.yaml

You can also try fewer nodes and use --config training.population_size=128. Or use backpropagation-based meta optimization --config_files configs/{rand_proj,backprop}.yaml.

Section 4.4 Figure 8

VSML

slurm/schedule.py --array=1-11 --nodes=128 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml

Meta RNN (Hochreiter 2001)

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{metarnn,pad}.yaml --tags metarnn

Fast weight memory

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{fwmemory,pad}.yaml --tags fwmemory

SGD

slurm/schedule.py --array=1-4 --nodes=2 --time 00:15:00 -- python3 launch.py --array configs/array/sgd.yaml --config_files configs/sgd.yaml --tags sgd

Hebbian

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{hebbian,pad}.yaml --tags hebbian
Owner
Louis Kirsch
Building RL agents that meta-learn their own learning algorithm. Currently pursuing a PhD in AI at IDSIA with Jürgen Schmidhuber. Previous DeepMind intern.
Louis Kirsch
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022