Exploit ILP to learn symmetry breaking constraints of ASP programs.

Overview

ILP Symmetry Breaking

Overview

This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs.

Given an ASP file, we use the system SBASS (symmetry-breaking answer set solving) to infer its graph representation and then detect the symmetries as a graph automorphism problem (performed by the system SAUCY). SBASS returns a set of (irredundant) graph symmetry generators, which are used in our framework to compute the positive and negative examples for the ILP system ILASP.

Note: the files of Active Background Knowledge (active_BK/active_BK_sat) contain the constraints learned for the experiments. To test the framework, remove the constraints and follow the files' instructions to obtain the same result.

Project Structure

.
├── \Experiments              # Directory with experiments results 
│   ├── experiments.csv         # CSV file with results
│   └── experiments             # Script to compare the running-time performance     
│
├── \Instances              # Directory with problem instances
│   ├── \House_Configuration     # House-Configuration Problem     
│   ├── \Pigeon_Owner            # Pigeon-Hole Problem with colors and owners extension   
│   ├── \Pigeon_Color            # Pigeon-Hole Problem with colors extension
│   └── \Pigeon_Hole             # Pigeon-Hole Problem  
│
├── \src                    # Sources  
│   ├── \ILASP4                  # ILASP4 
│   ├── \SBASS                   # SBASS 
│   ├── file_names.py            # Python module with file names
│   ├── parser.py                # Main python file: create the positive and negative examples from SBASS output
│   ├── remove.py                # Auxiliary python file to remove duplicate in smodels file
│   └── permutations.lp          # ASP file which computes the (partial) non symmetric 
│                                  permutations of atoms
│
├── .gitignore 
├── .gitattributes
├── ILP_SBC                 # Script that runs SBASS and lift the SBC found using ILASP
└── README.md

Prerequisites

Usage

1) Create default positive examples

Create the default positive examples for Pigeon_Hole problem: each instance in the directory Gen generate a positive example.

$ .\ILP_SBC -g .\Instances\Pigeon_Hole

2) Create positive and negative examples

Default mode: each non-symmetric answer set defines a positive example

 $ .\ILP_SBC -d .\Instances\Pigeon_Hole

Satisfiable mode: define a single positive example with empty inclusions and exclusions

 $ .\ILP_SBC -s .\Instances\Pigeon_Hole

3) Run ILASP to extend the active background knowledge

 $ .\ILP_SBC -i .\Instances\Pigeon_Hole

Citations

C. Drescher, O. Tifrea, and T. Walsh, “Symmetry-breaking answer set solving” (SBASS)

@article{drescherSymmetrybreakingAnswerSet2011,
	title = {Symmetry-breaking answer set solving},
	volume = {24},
	doi = {10.3233/AIC-2011-0495},
	number = {2},
	journal = {AI Commun.},
	author = {Drescher, Christian and Tifrea, Oana and Walsh, Toby},
	year = {2011},
	pages = {177--194}
}

M. Law, A. Russo, and K. Broda, “The {ILASP} System for Inductive Learning of Answer Set Programs” (ILASP)

@article{larubr20b,
     title = {The {ILASP} System for Inductive Learning of Answer Set Programs},
     author = {M. Law and A. Russo  and K. Broda},
     journal = {The Association for Logic Programming Newsletter},
     year = {2020}
}
@misc{ilasp,
     author = {M. Law and A. Russo  and K. Broda},
     title = {Ilasp Releases},
     howpublished = {\url{www.ilasp.com}},
     note = {Accessed: 2020-10-01},
     year={2020}
}
Owner
Research Group Production Systems
Research Group Production Systems
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
LBK 26 Dec 28, 2022