Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Related tags

Deep Learninggvp
Overview

Geometric Vector Perceptron

Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL Townshend, and RO Dror.

This repository serves two purposes. If you would like to use the architecture for protein design, we provide the pipeline for our experiments as well as our final trained model. If you are interested in adapting the architecture for other purposes, we provide instructions for general use of the GVP.

UPDATE: A PyTorch Geometric version of the GVP is now available at https://github.com/drorlab/gvp-pytorch, emphasizing ease of use and modularity. All future changes will be in PyTorch and pushed to this new repository.

Requirements

  • UNIX environment
  • python==3.7.6
  • numpy==1.18.1
  • scipy==1.4.1
  • pandas==1.0.3
  • tensorflow==2.1.0
  • tqdm==4.42.1

Protein design

Our training pipeline uses the CATH 4.2 dataset curated by Ingraham, et al, NeurIPS 2019. We provide code to train, validate, and test the model on this dataset. We also provide a pretrained model in models/cath_pretrained. If you want to test a trained model on new structures, see the section "Using the CPD model" below.

Fetching the datasets

Run getCATH.sh in data/ to fetch the CATH 4.2 dataset. If you are interested in testing on the TS 50 test set, also run grep -Fv -f ts50remove.txt chain_set.jsonl > chain_set_ts50.jsonl to produce a training set without overlap with the TS 50 test set.

Training the CPD model

Run python3 train_cpd.py [dataset] in src/ where [dataset] is the complete CATH 4.2 dataset, ../data/chain_set.jsonl, or the CATH 4.2 with overlap with TS50 removed, ../data/chain_set_ts50.jsonl. Model checkpoints are saved to models/ identified by the timestamp of the start of the run and the epoch number.

Evaluating the CPD model

Perplexity

To evaluate perplexity, run python3 test_cpd_perplexity.py ../models/cath_pretrained in src/.

Command Output
python3 test_cpd_perplexity.py ../models/cath_pretrained ALL TEST PERPLEXITY 5.29298734664917
SHORT TEST PERPLEXITY 7.0954108238220215
SINGLE CHAIN TEST PERPLEXITY 7.4412713050842285

Recovery

To evaluate recovery, run python3 test_cpd_recovery.py [model] [dataset] [output] in src/. [dataset] should be one of cath, short, sc, ts50. [model] should be ../models/ts50_pretrained if evaluating on the TS50 test set and ../models/cath_pretrained otherwise. Recoveries for each target will be dumped into the file [output]. To get the median recovery, run python3 analyze.py [output].

Because the recovery can take some time to run, we have supplied outputs in outputs/.

Command Output
python3 analyze.py ../outputs/cath.out 0.40187938705576753
python3 analyze.py ../outputs/short.out 0.32149746594868545
python3 analyze.py ../outputs/sc.out 0.319731182795699
python3 analyze.py ../outputs/ts50.out 0.44852965747702583

Using the CPD model

To use the CPD model on your own backbone structures, first convert the structures into a json format as follows:

[
    {
        "seq": "TQDCSFQHSP...",
        "coords": [[[74.46, 58.25, -21.65],...],...]
    }
    ...
]

For each structure, coords should be a num_residues x 4 x 3 nested list of the positions of the backbone N, C-alpha, C, and O atoms of each residue (in that order). If only backbone information is available, you can use a placeholder sequence of the same length. Then, run the below instructions (the function sample is defined in test_cpd_recovery.py)

dataset = datasets.load_dataset(PATH_TO_JSON, batch_size=1, shuffle=False)
for structure, seq, mask in dataset:
    n = 1 # number of sequences to sample
    # model is a pretrained CPD model
    design = sample(model, structure, mask, n)
    design = tf.cast(design, tf.int32).numpy()

The output design now an n x num_residues array of n designs, with amino acids represented as integers according to the encodings used to train the model. The encodings used by our pretrained model are in /src/datasets.py.

General usage

We describe our implementation in several levels of abstraction to make it as easy as possible to adapt the GVP to your uses. If you have any questions, please contact [email protected].

Using the core GVP modules

The core GVP modules are implemented in src/GVP.py. It contains code for the GVP itself, the vector/scalar dropout, and the vector/scalar batch norm, each of which is a tf.keras.layers.Module. These modules are initialized as follows:

gvp = GVP(vi, vo, so)
dropout = GVPDropout(drop_rate, nv)
layernorm = GVPLayerNorm(nv)

In the code and comments, vi, vo, si, so refer to number of vector/scalar channels in/out. nv and ns are the number of scalar/vector channels, and nls and nlv are the scalar/vector nonlinearities. The value si doesn't need to be specified because TensorFlow imputes it at the first forward pass.

Because the modules are designed to easily replace dense layers in a GNN, they are designed to take a single tensor x instead of seperate scalar/vector channel tensors. This is accomplished by assigning the first 3*nv channels in the input tensor to be the nv vector channels and the remaining channels to be the ns scalar channels. We provide utility functions merge and split to convert between seperate tensors where the vector tensor has dims [..., 3, nv] and the scalar tensor has dims [..., ns], and a single tensor with dims [..., 3*nv + ns]. For example:

v, s = input_data
x = merge(v, s)
x = gvp(x)
x = dropout(x, training=True)
x = layernorm(x)
v, s = split(x, nv=v.shape[-1])

Use vs_concat(x1, x2, nv1, nv2) to concatenate tensors x1 and x2 with nv1 and nv2 implicit vector channels.

Using the protein GNN

Our protein GNN is defined in src/models.py and is adapted from the protein GNN in Ingraham, et al, NeurIPS 2019. We provide two fully specified networks which take in raw protein representations and output a single global scalar prediction (MQAModel) or a 20-dimensional feature vector at each residue (CPDModel). Note that the CPDModel currently uses sequence information autoregressively. Sample usage:

mqa_model = MQAModel(node_dims, edge_dims, hidden_dims, num_layers)
X, S, mask = input_batch
output = mqa_model(X, S, mask) # dims [batch_size, 1]

The input X is a float tensor with dims [batch_size, num_residues, 4, 3] and has the backbone coordinates of N, C-alpha, C, and O atoms of each residue (in that order). S contains the sequence information as a integer tensor with dims [batch_size, num_residues]. The integer encodings can be arbitrary but the ones used by our pretrained model are defined in src/datasets.py. The mask is a float tensor with dims [batch, num_nodes] that is 1 for residues that exist and 0 for nodes that do not.

The three dims arguments should each be tuples (nv, ns) describing the number of vector and scalar channels to use in each embedding. The protein graph is first built using structural features to produce node embeddings with dims node_dims, then transformed into hidden_dims after adding sequence information. Therefore the two arguments are somewhat redundant. Note that the edge embeddings are static and are generated with only one vector feature, so anything greater than edge_nv = 1 is redundant.

If adapting one of the two provided models is insufficient, next we describe the building blocks of the protein GNN.

Structural features

The StructuralFeatures module converts the tensor X of raw backbone coordinates into a proximity graph with structure-based node and edge embeddings described in the paper.

feature_builder = StructuralFeatures(node_dims, edge_dims, top_k=30) # k nearest neighbors
h_V, h_E, E_idx = feature_builder(X, mask) # mask is as described above

h_V is the node embedding tensor with dims [batch, num_nodes, 3*node_nv+node_ns], h_E is the edge embedding tensor with dims [batch, num_nodes, top_k, 3*edge_nv+edge_ns], and E_idx is the tensor of neighbor node indices with dims [batch, num_nodes, top_k].

Message passing layers

A MPNNLayer is a single message-passing layer that takes in a tensor of incoming messages h_M from edges and neighboring nodes to update node embeddings. The layer is initialized as follows:

mpnn_layer = MPNNLayer(vec_in, hidden_dim)

Here, vec_in is the number of vector channels in the incoming message message (node_nv + edge_nv). The layer is then used as follows:

h_V = mpnn_layer(h_V, h_M, mask=None)

The optional mask is as described above. It is also possible to use an edgewise mask mask_attend with dims [batch, num_nodes, num_nodes] --- in autoregressive sampling, for example.

Note that while we also use the local node embedding as part of the message, the MPNNLayer itself will perform this concatenation, so you should only pass in the edge embeddings concatenated to the neighbor node embeddings. That is, h_M should have dims [batch, num_nodes, top_k, 3*vec_in+node_ns+edge_ns]. This tensor can be formed as:

h_M = cat_neighbors_nodes(h_V, h_E, E_idx, node_nv, edge_nv)

The Encoder module is a stack of MPNNLayers that performs multiple graph propagation steps directly using the node and edge embeddings h_V and h_E:

encoder = Encoder(node_dims, edge_dims, num_layers)
h_V = encoder(h_V, h_E, E_idx, mask=None)

The Decoder module is similar, except it incorporates sequence information autoregressively as described in the paper. If you are doing something other than autoregressive protein design, Decoder will likely be less useful to you.

Data pipeline

While we provide a data pipeline in src/datasets.py, it is specific for the training points/labels in protein design, so you will probably need to write your own for a different application. At minimum, you should modify load_dataset and parse_batch to convert your input representation to the model inputs X, S, and any necessary training labels.

Acknowledgements

The initial implementation of portions of the protein GNN and the input data pipeline were adapted from Ingraham, et al, NeurIPS 2019.

Citation

@inproceedings{
    jing2021learning,
    title={Learning from Protein Structure with Geometric Vector Perceptrons},
    author={Bowen Jing and Stephan Eismann and Patricia Suriana and Raphael John Lamarre Townshend and Ron Dror},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=1YLJDvSx6J4}
}
Owner
Dror Lab
Ron Dror's computational biology laboratory at Stanford University
Dror Lab
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022