A computer vision pipeline to identify the "icons" in Christian paintings

Overview

Christian-Iconography

Open In Colab Screenshot from 2022-01-08 18-26-30

A computer vision pipeline to identify the "icons" in Christian paintings.

A bit about iconography.

Iconography is related to identifying the subject itself in the image. So, for instance when I say Christian Iconography I would mean that I am trying to identify some objects like crucifix or mainly in this project the saints!

Inspiration

I was looking for some interesting problem to solve and I came across RedHenLab's barnyard of projects and it had some really wonderful ideas there and this particular one intrigued me. On the site they didn't have much progress on it as the datasets were not developed on this subject but after surfing around I found something and just like that I got started!

Dataset used.

The project uses the ArtDL dataset which contains 42,479 images of artworks portraying Christian saints, divided in 10 classes: Saint Dominic (iconclass 11HH(DOMINIC)), Saint Francis of Assisi (iconclass 11H(FRANCIS)), Saint Jerome (iconclass 11H(JEROME)), Saint John the Baptist (iconclass 11H(JOHN THE BAPTIST)), Saint Anthony of Padua (iconclass 11H(ANTONY OF PADUA), Saint Mary Magdalene (iconclass 11HH(MARY MAGDALENE)), Saint Paul (iconclass 11H(PAUL)), Saint Peter (iconclass 11H(PETER)), Saint Sebastian (iconclass 11H(SEBASTIAN)) and Virgin Mary (iconclass 11F). All images are associated with high-level annotations specifying which iconography classes appear in them (from a minimum of 1 class to a maximum of 7 classes).

Sources

Screenshot from 2022-01-08 18-08-56

Preprocessing steps.

All the images were first padded so that the resolution is sort of intact when the image is resized. A dash of normalization and some horizontal flips and the dataset is ready to be eaten/trained on by our model xD.

Architecture used.

As mentioned the ArtDL dataset has around 43k images and hence training it completely wouldn't make sense. Hence a ResNet50 pretrained model was used.

But there is a twist.

Instead of just having the final classifying layer trained we only freeze the initial layer as it has gotten better at recognizing patterns from a lot of images it might have trained on. And then we fine-tune the deeper layers so that it learns the art after the initial abstraction. Another deviation is to replace the final linear layer by 1x1 conv layer to make the classification.

Quantiative Results.

Training

I trained the network for 10 epochs which took around 3 hours and used Stochastic Gradient Descent with LR=0.01 and momentum 0.9. The accuracy I got was 64% on the test set which can be further improved.

Classification Report

Screenshot from 2022-01-10 22-07-52

From the classification report it is clear that Saint MARY has the most number of samples in the training set and the precision for that is high. On the other hand other samples are low in number and hence their scores are low and hence we can't infer much except the fact that we need to oversample some of these classes so that we can gain more meaningful resuls w.r.t accuracy and of course these metrics as well

Qualitative Results

We try an image of Saint Dominic and see what our classifier is really learning.

Screenshot from 2022-01-10 22-10-37

Saliency Map

Screenshot from 2022-01-10 22-12-31

We can notice that regions around are more lighter than elsewhere which could mean that our classifier at least knows where to look :p

Guided-Backpropagation

Screenshot from 2022-01-10 22-14-26

So what really guided backprop does is that it points out the positve influences while classifiying an image. From this result we can see that it is really ignoring the padding applied and focussing more on the body and interesting enough the surroundings as well

Grad-CAM!

Screenshot from 2022-01-10 22-15-27

As expected the Grad-CAM when used shows the hot regions in our images and it is around the face and interesting enough the surrounding so maybe it could be that surroundings do have a role-play in type of saint?

Possible improvements.

  • Finding more datasets
  • Or working on the architecture maybe?
  • Using GANs to generate samples and make classifier stronger

Citations

@misc{milani2020data,
title={A Data Set and a Convolutional Model for Iconography Classification in Paintings},
author={Federico Milani and Piero Fraternali},
eprint={2010.11697},
archivePrefix={arXiv},
primaryClass={cs.CV},
year={2020}
}

RedhenLab's barnyard of projects

Owner
Rishab Mudliar
AKA Start At The Beginning.
Rishab Mudliar
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022