Subpopulation detection in high-dimensional single-cell data

Overview

PhenoGraph for Python3

PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") representing phenotypic similarities between cells and then identifying communities in this graph.

This software package includes compiled binaries that run community detection based on C++ code written by E. Lefebvre and J.-L. Guillaume in 2008 ("Louvain method"). The code has been altered to interface more efficiently with the Python code here. It should work on reasonably current Linux, Mac and Windows machines.

To install PhenoGraph, simply run the setup script:

pip install PhenoGraph

Expected use is within a script or interactive kernel running Python 3.x. Data are expected to be passed as a numpy.ndarray. When applicable, the code uses CPU multicore parallelism via multiprocessing.

To run basic clustering:

import phenograph
communities, graph, Q = phenograph.cluster(data)

For a dataset of N rows, communities will be a length N vector of integers specifying a community assignment for each row in the data. Any rows assigned -1 were identified as outliers and should not be considered as a member of any community. graph is a N x N scipy.sparse matrix representing the weighted graph used for community detection. Q is the modularity score for communities as applied to graph.

If you use PhenoGraph in work you publish, please cite our publication:

@article{Levine_PhenoGraph_2015,
  doi = {10.1016/j.cell.2015.05.047},
  url = {http://dx.doi.org/10.1016/j.cell.2015.05.047},
  year  = {2015},
  month = {jul},
  publisher = {Elsevier {BV}},
  volume = {162},
  number = {1},
  pages = {184--197},
  author = {Jacob H. Levine and Erin F. Simonds and Sean C. Bendall and Kara L. Davis and El-ad D. Amir and Michelle D. Tadmor and Oren Litvin and Harris G. Fienberg and Astraea Jager and Eli R. Zunder and Rachel Finck and Amanda L. Gedman and Ina Radtke and James R. Downing and Dana Pe'er and Garry P. Nolan},
  title = {Data-Driven Phenotypic Dissection of {AML} Reveals Progenitor-like Cells that Correlate with Prognosis},
  journal = {Cell}
}

Release Notes

Version 1.5.7

  • Updated leidenalg and scipy version requirements, revised parallel jaccard to support scipy==1.5.1, and created a test collection for use with pytest (see below).
  • Added PhenoGraph clustering tutorial with PBMC3K dataset from 10X Genomics (dataset included).

Version 1.5.6

  • Fix the multiprocessing code that doesn't close/join the pool.

Version 1.5.5

  • Exposed parameter n_iterations for Leiden, along with minor fixes to manage sorting parallelism, and updated documentation of the clustering and sorting methods.

Version 1.5.4

  • Faster and more efficient sorting by size of clusters, for large nearest neighbours graph, implementing multiprocessing and faster methods for sorting.

Version 1.5.3

  • Phenograph supports now Leiden algorithm for community detection. The new feature can be called from phenograph.cluster, by choosing leiden as the clustering algorithm.

Version 1.5.2

  • Include simple parallel implementation of brute force nearest neighbors search using scipy's cdist and multiprocessing. This may be more efficient than kdtree on very large high-dimensional data sets and avoids memory issues that arise in sklearn's implementation.
  • Refactor parallel_jaccard_kernel to remove unnecessary use of ctypes and multiprocessing.Array.

Version 1.5.1

  • Make louvain_time_limit a parameter to phenograph.cluster.

Version 1.5

  • phenograph.cluster can now take as input a square sparse matrix, which will be interpreted as a k-nearest neighbor graph. Note that this graph must have uniform degree (i.e. the same value of k at every point).
  • The default time_limit for Louvain iterations has been increased to a more generous 2000 seconds (~half hour).

Version 1.4.1

  • After observing inconsistent behavior of sklearn.NearestNeighbors with respect to inclusion of self-neighbors, the code now checks that self-neighbors have been included before deleting those entries.

Version 1.4

  • The dependence on IPython and/or ipyparallel has been removed. Instead the native multiprocessing package is used.
  • Multiple CPUs are used by default for computation of nearest neighbors and Jaccard graph.

Version 1.3

  • Proper support for Linux.

Running the Unit Tests

Unit tests for assessing the functionality of each module are included in the 'tests' directory. In addition to the dependencies required by PhenoGraph, to run these tests, you must first install the pytest module.

If your system uses Python >= 3.8.0 or greater, install pytest with:

pip install pytest #Python >= 3.8.0

Otherwise, install pytest with:

pip install pytest==6.0.2 #Python < 3.8.0

Once pytest is installed, navigate to the 'PhenoGraph/' directory and run with:

pytest

All tests should pass with no warnings.

Troubleshooting

Notebook freezes after several attempts of running PhenoGraph using Jypyter Notebook

  • Running PhenoGraph from a Jupyter Notebook repeatedly on macOS Catalina, but not Mojave, using Python 3.7.6, causes a hang and the notebook becomes unresponsive, even for a basic matrix of nearest neighbors. However, this issue was not reproducible in command line using Python interpreter in both Catalina and Mojave platforms, without using Jupyter Notebook.

    It was found that attempting to plot principal components using

    :func:`~matplotlib.pyplot.scatter`
    

    in Jupyter Notebook causes a freeze, and PhenoGraph becomes unresponsive unless the kernel is restarted. When removing this line of code, everything goes back to normal and the Jupyter Notebook stopes crashing with repeated runs of PhenoGraph.

Architecture related error

  • When attempting to process very large nearest neighbours graph, e.g. a 2000000 x 2000000 kNN graph matrix with 300 nearest neighbours, a struct.error() is raised:

    struct.error: 'i' format requires -2147483648 <= number <= 2147483647

    This issue was reported on stackoverflow and it's related to the multiprocessing while building the Jaccard object.

    The struct.error() has been fixed in python >= 3.8.0.

leidenalg inside conda environment

  • When using PhenoGraph inside a conda environment leiden takes longer to complete for larger samples compared to the system Python.

numpy.ufunc runtime warning when running pytest

  • When running unit tests, pytest may deliver the following warning RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. This is caused by an incompatability between newer versions of the pytest module and an older version of Python. Check your Python version with:

    python --version
    

    If using Python >= 3.8.0, all version of pytest are compatible. If using Python < 3.8.0, downgrade to pytest version 6.0.2 (see above).

Comments
  • Added tests and updated requirements

    Added tests and updated requirements

    requirements.txt now includes update to scipy and leidenalg

    new tests folder added with 7 unit tests for functions which rely on scipy/leidenalg

    cluster function in cluster.py refactored to separate community detection functions for testing

    Note: Maybe we should create a "version 1.5.7" branch as mentioned?

    opened by andrewmoorman 6
  • Issue with multiprocessing

    Issue with multiprocessing

    Hello, I have installed PhenoGraph 1.5.7 together with the required libraries. PhenoGraph breaks when trying to run the example notebook not "line by line" but in full (have a try with this: PhenoGraph_demo_random.zip). Indeed, PhenoGraph crashes during internal execution of sort_by_size function, starting an infinite loop in which 4 identical plots are created.

    When I set n_jobs = 4 or I omit that parameter, the execution crashes during Neighbors computation: 1

    Instead, if I set n_jobs = 1, the execution stops at sort_by_size function: 2

    In both cases the error, related to multiprocessing, is the following:

    3

    How could we solve that?

    opened by giacomos97 5
  • TypeError: Expected list, got numpy.ndarray

    TypeError: Expected list, got numpy.ndarray

    Numpy version is 1.18.5. Running phenograph.cluster(pca_df), where pca_df is either a np.ndarray or pd.DataFrame, gives the following error

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-127-8f4599a5b0ca> in <module>
          2 
          3 # Cluster and cluster centrolds
    ----> 4 communities, graph, Q = phenograph.cluster(pca_df.values)
          5 communities = pd.Series(communities, index=pca_df.index)
    
    ~/software/miniconda3/lib/python3.8/site-packages/phenograph/cluster.py in cluster(data, clustering_algo, k, directed, prune, min_cluster_size, jaccard, primary_metric, n_jobs, q_tol, louvain_time_limit, nn_method, partition_type, resolution_parameter, n_iterations, use_weights, seed, **kargs)
        243     else:
        244         del d
    --> 245         graph = neighbor_graph(kernel, kernelargs)
        246         print(
        247             "Jaccard graph constructed in {} seconds".format(time.time() - subtic),
    
    ~/software/miniconda3/lib/python3.8/site-packages/phenograph/core.py in neighbor_graph(kernel, kernelargs)
         82     :return graph: n-by-n COO sparse matrix
         83     """
    ---> 84     i, j, s = kernel(**kernelargs)
         85     n, k = kernelargs["idx"].shape
         86     graph = sp.coo_matrix((s, (i, j)), shape=(n, n))
    
    ~/software/miniconda3/lib/python3.8/site-packages/phenograph/core.py in parallel_jaccard_kernel(idx)
        152         graph.data[i] = tup[1]
        153 
    --> 154     i, j = graph.nonzero()
        155     s = graph.tocoo().data
        156     return i, j, s[s > 0]
    
    ~/software/miniconda3/lib/python3.8/site-packages/scipy/sparse/base.py in nonzero(self)
        774 
        775         # convert to COOrdinate format
    --> 776         A = self.tocoo()
        777         nz_mask = A.data != 0
        778         return (A.row[nz_mask], A.col[nz_mask])
    
    ~/software/miniconda3/lib/python3.8/site-packages/scipy/sparse/base.py in tocoo(self, copy)
        904         the resultant coo_matrix.
        905         """
    --> 906         return self.tocsr(copy=False).tocoo(copy=copy)
        907 
        908     def tolil(self, copy=False):
    
    ~/software/miniconda3/lib/python3.8/site-packages/scipy/sparse/lil.py in tocsr(self, copy)
        475         indices = np.empty(nnz, dtype=idx_dtype)
        476         data = np.empty(nnz, dtype=self.dtype)
    --> 477         _csparsetools.lil_flatten_to_array(self.rows, indices)
        478         _csparsetools.lil_flatten_to_array(self.data, data)
        479 
    
    _csparsetools.pyx in scipy.sparse._csparsetools.lil_flatten_to_array()
    
    _csparsetools.pyx in scipy.sparse._csparsetools._lil_flatten_to_array_int32()
    
    TypeError: Expected list, got numpy.ndarray
    
    bug 
    opened by vincent6liu 5
  • Incompatibility scipy > 1.4.2

    Incompatibility scipy > 1.4.2

    PhenoGraph seems to break down with the newest versions of scipy (1.5 and 1.6). When running the algorithm, the following error occurs:

    TypeError: Expected list, got numpy.ndarray

    Full error code can be found here: https://github.com/theislab/scanpy/issues/1407

    Any ideas or updates on how to resolve this?

    opened by prubbens 3
  • Best k value to use

    Best k value to use

    Hi, I have a question about the parameter k, the number of nearest neighbors to use, is there a way to choose the best k value? like comparing the modularity for each k and choose based on some criteria. Thanks.

    opened by dalide 2
  • Latest version PG 1.5.7 does not work with latest requirement Leiden 0.8.2

    Latest version PG 1.5.7 does not work with latest requirement Leiden 0.8.2

    I updated my Phenograph to 1.5.7 in order to work with latest scipy version which is required by latest scanpy. A Leiden >=0.8.2 was installed as part of PhenoGraph requirement. However, after testing, I believe there is some change in the latest Leiden that leads to Phenograph failure.

    Downgrading leiden to 0.8.1 works.

    opened by YubinXie 2
  • no executable permission of Louvain/linux-* files

    no executable permission of Louvain/linux-* files

    Hi there!

    Just upgraded my PhenoGraph with pip install -U PhenoGraph, and after that I got an error when running PhenoGraph, stating that permission was denied to my [path_to_env]lib/python3.7/site-packages/phenograph/louvain/linux-convert file. Same for the other two linux- files in that folder. After changing permissions to those three files with chmod +x, the error was solved. Not sure if it was a glitch in my system or a problem with the PhenoGraph package, but maybe you guys could check :)

    opened by LisaSikkema 2
  • Fixed the type error from upgraded Scipy (> 1.4.1)

    Fixed the type error from upgraded Scipy (> 1.4.1)

    Fixed the type error which results from the upgrade to Scipy > 1.4.1. This previously resulted from the way the sparse lil graph was constructed (using ndarray instead of list values) which requires lists as arguments.

    opened by andrewmoorman 2
  • Running PhenoGraph from Jupyter Notebook sometimes hangs

    Running PhenoGraph from Jupyter Notebook sometimes hangs

    Environment:

    • macOS Catalina
    • Python 3.7.6
    • Jupyter Notebook
    • matplotlib

    How to Reproduce:

    • Create a new Juypyter Notebook
    • Draw a plot using matplotlib (e.g. scatter plot)
    • Run PhenoGraph multiple times

    Tentative Solution:

    Unfortunately, there is no proper solution to this problem yet. We will revisit this once the following issue is resolved on the matplotlib side: https://github.com/matplotlib/matplotlib/issues/15410

    In the meantime, you can avoid this problem by doing one of the following:

    1. Do not upgrade to macOS Catalina. Also, it seems that the problem doesn't happen to Linux users (e.g. HPC, AWS, GCP)
    2. Upgrade to Python 3.8.2.
    3. Set n_jobs to 1. (note that this disables multiprocessing, thus PhenoGraph will run slow on a huge matrix, but the performance difference is usually negligible if you work with relatively small matrices)
    4. Use a different backend engine for matplotlib (e.g. no inline plotting)
    5. If possible, run PhenoGraph first before importing the matplotlib library.
    opened by hisplan 2
  • Fixed the type error from upgraded Scipy (> 1.4.1)

    Fixed the type error from upgraded Scipy (> 1.4.1)

    Fixed the type error which results from the upgrade to Scipy > 1.4.1. This previously resulted from the way the sparse lil graph was constructed (using ndarray instead of list values) which requires lists as arguments.

    opened by andrewmoorman 0
  • Assign new points to defined clusters

    Assign new points to defined clusters

    Hi,

    I often work with large amount of data (i.e., number of samples >>> number of features). So, I conduct clustering analysis by selecting a subset to determine the desired number of clusters. Then, I query the remaining data to assign unseen points to their respective clusters.

    I was wondering if the produced graph by PhenoGraph package can be used to mimic the process outlined above. If so, could you provide guidelines on how to accomplish this.

    Many thanks,

    Ivan

    opened by ivan-marroquin 0
  • `phonograph.cluster()` function doesn't seem to work correctly on Windows Subsystem for Linux

    `phonograph.cluster()` function doesn't seem to work correctly on Windows Subsystem for Linux

    Hi I run this PhenoGraph tutorial "tutorial_pbmc3k.ipynb" But the “phonograph.cluster()” function can’t successfully calculate the communities, all the communities are zeros. But there is no error or warning. Is there something wrong with this function? IPython 7.20.0 jupyter_client 6.1.11 jupyter_core 4.7.1 jupyterlab 3.0.7 notebook 6.2.0 scanpy==1.6.1 anndata==0.7.5 umap==0.4.6 numpy==1.19.2 scipy==1.4.1 pandas==1.2.1 scikit-learn==0.24.1 statsmodels==0.12.1 python-igraph==0.8.3 louvain==0.7.0 leidenalg==0.8.1

    Thanks Dan

    opened by danli349 12
Releases(v1.5.7)
  • v1.5.7(Oct 5, 2020)

    • Revised parallel Jaccard to support scipy==1.5.1 (previously failed with scipy=1.4.1 / https://github.com/dpeerlab/PhenoGraph/issues/4)
    • Updated leidenalg and scipy version requirements.
    • Added PhenoGraph clustering tutorial with PBMC3K dataset from 10X Genomics.
    • Created a test collection for use with pytest.
    Source code(tar.gz)
    Source code(zip)
  • v1.5.6(May 3, 2020)

  • v1.5.4(Apr 29, 2020)

  • v1.5.3(Feb 28, 2020)

    Phenograph supports now Leiden algorithm for community detection. The new feature can be called from phenograph.cluster, by choosing leiden as the clustering algorithm. Few adjustments to the code including black formatting.

    Source code(tar.gz)
    Source code(zip)
  • v1.5.2(Sep 19, 2019)

    • Include simple parallel implementation of brute force nearest neighbors search using scipy's cdist and multiprocessing. This may be more efficient than kdtree on very large high-dimensional data sets and avoids memory issues that arise in sklearn's implementation.
    • Refactor parallel_jaccard_kernel to remove unnecessary use of ctypes and multiprocessing.Array.
    Source code(tar.gz)
    Source code(zip)
Owner
Dana Pe'er Lab
Computational Biology @ Memorial Sloan Kettering Cancer Center
Dana Pe'er Lab
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022