Official Implementation of PCT

Related tags

Deep LearningProto_DA
Overview

Official Implementation of PCT

Prerequisites

  • python == 3.8.5

Please make sure you have the following libraries installed:

  • numpy
  • torch>=1.4.0
  • torchvision>=0.5.0

Datasets

We provide direct download links in the script. However, for file larger than 100 MB (OfficeHome - Art and RealWorld), please manually download them from the following links--Art and RealWorld--and extract them appropriately.

Usage

  • beta - learning rate/ momentum parameter to learn proportions in the target domain ( beta=0 corresponds to using a uniform prior)
  • sub_s - subsample the source dataset
  • sub_t - subsample the target dataset

Below, we provide example commands to run our method.

# Train PCT on Office-31 Amazon -> Webcam task using ResNet 50.
# Assume you have put the datasets under the path `data/office-31

# Single-source adaptation 
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10

# Sub-sampled source adaptation (uniform prior)
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10 --sub_s

# Sub-sampled source adaptation (learnable prior)
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10 --sub_s --beta 0.001

# Sub-sampled target adaptation (uniform prior)
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10 --sub_t

# Sub-sampled target adaptation (learnable prior)
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10 --sub_t --beta 0.001

Example commands are included in examples/proto.sh.

For source-private adaptation, please follow the instruction in the readme.md in the `Proto_Private' folder.

Citation

We adapt our code base from the v0.1 of the DALIB library.

If you find our framework useful, please cite our paper.

PCT

@inproceedings{tanwisuth2021prototype,
title={A Prototype-Oriented Framework for Unsupervised Domain Adaptation},
author={Korawat Tanwisuth and Xinjie Fan and Huangjie Zheng and Shujian Zhang and Hao Zhang and Bo Chen and Mingyuan Zhou},
booktitle = {NeurIPS 2021: Neural Information Processing Systems},
month={Dec.},
Note = {(the first three authors contributed equally)},
year = {2021}
}

DALIB

@misc{dalib,
author = {Junguang Jiang, Baixu Chen, Bo Fu, Mingsheng Long},
title = {Transfer-Learning-library},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/thuml/Transfer-Learning-Library}},
}

Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022