This is an official source code for implementation on Extensive Deep Temporal Point Process

Related tags

Deep LearningEDTPP
Overview

Extensive Deep Temporal Point Process

This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed of the following three parts:

1. REVIEW on methods on deep temporal point process

2. PROPOSITION of a framework on Granger causality discovery

3. FAIR empirical study

Reviews

We first conclude the recent research topics on deep temporal point process as four parts:

· Encoding of history sequence

· Relational discovery of events

· Formulation of conditional intensity function

· Learning approaches for optimization

By dismantling representative methods into the four parts, we list their contributions on temporal point process.

Methods with the same learning approaches:

Methods History Encoder Intensity Function Relational Discovery Learning Approaches Released codes
RMTPP RNN Gompertz / MLE with SGD https://github.com/musically-ut/tf_rmtpp
ERTPP LSTM Gaussian / MLE with SGD https://github.com/xiaoshuai09/Recurrent-Point-Process
CTLSTM CTLSTM Exp-decay + softplus / MLE with SGD https://github.com/HMEIatJHU/neurawkes
FNNPP LSTM FNNIntegral / MLE with SGD https://github.com/omitakahiro/NeuralNetworkPointProcess
LogNormMix LSTM Log-norm Mixture / MLE with SGD https://github.com/shchur/ifl-tpp
SAHP Transformer Exp-decay + softplus Attention Matrix MLE with SGD https://github.com/QiangAIResearcher/sahp_repo
THP Transformer Linear + softplus Structure learning MLE with SGD https://github.com/SimiaoZuo/Transformer-Hawkes-Process
DGNPP Transformer Exp-decay + softplus Bilevel Structure learning MLE with SGD No available codes until now.

Methods focusing on learning approaches:

Expansions:

Granger causality framework

The workflows of the proposed granger causality framework:

Experiments shows improvements in fitting and predictive ability in type-wise intensity modeling settings. And the Granger causality graph can be obtained:

Learned Granger causality graph on Stack Overflow

Fair empirical study

The results is showed in the Section 6.3. Here we give an instruction on implementation.

Installation

Requiring packages:

pytorch=1.8.0=py3.8_cuda11.1_cudnn8.0.5_0
torchvision=0.9.0=py38_cu111
torch-scatter==2.0.8

Dataset

We provide the MOOC and Stack Overflow datasets in ./data/

And Retweet dataset can be downloaded from Google Drive. Download it and copy it into ./data/retweet/

To preprocess the data, run the following commands

python /scripts/generate_mooc_data.py
python /scripts/generate_stackoverflow_data.py
python /scripts/generate_retweet_data.py

Training

You can train the model with the following commands:

python main.py --config_path ./experiments/mooc/config.yaml
python main.py --config_path ./experiments/stackoverflow/config.yaml
python main.py --config_path ./experiments/retweet/config.yaml

The .yaml files consist following kwargs:

log_level: INFO

data:
  batch_size: The batch size for training
  dataset_dir: The processed dataset directory
  val_batch_size: The batch size for validation and test
  event_type_num: Number of the event types in the dataset. {'MOOC': 97, "Stack OverFlow": 22, "Retweet": 3}

model:
  encoder_type: Used history encoder, chosen in [FNet, RNN, LSTM, GRU, Attention]
  intensity_type: Used intensity function, chosen in [LogNormMix, GomptMix, LogCauMix, ExpDecayMix, WeibMix, GaussianMix] and 
        [LogNormMixSingle, GomptMixSingle, LogCauMixSingle, ExpDecayMixSingle, WeibMixSingle, GaussianMixSingle, FNNIntegralSingle],
        where *Single means modeling the overall intensities
  time_embed_type: Time embedding, chosen in [Linear, Trigono]
  embed_dim: Embeded dimension
  lag_step: Predefined lag step, which is only used when intra_encoding is true
  atten_heads: Attention heads, only used in Attention encoder, must be a divisor of embed_dim.
  layer_num: The layers number in the encoder and history encoder
  dropout: Dropout ratio, must be in 0.0-1.0
  gumbel_tau: Initial temperature in Gumbel-max
  l1_lambda: Weight to control the sparsity of Granger causality graph
  use_prior_graph: Only be true when the ganger graph is given, chosen in [true, false]
  intra_encoding: Whether to use intra-type encoding,  chosen in [true, false]

train:
  epochs: Training epoches
  lr: Initial learning rate
  log_dir: Diretory for logger
  lr_decay_ratio: The decay ratio of learning rate
  max_grad_norm: Max gradient norm
  min_learning_rate: Min learning rate
  optimizer: The optimizer to use, chosen in [adam]
  patience: Epoch for early stopping 
  steps: Epoch numbers for learning rate decay. 
  test_every_n_epochs: 10
  experiment_name: 'stackoverflow'
  delayed_grad_epoch: 10
  relation_inference: Whether to use graph discovery, chosen in [true, false],
        if false, but intra_encoding is true, the graph will be complete.
  
gpu: The GPU number to use for training

seed: Random Seed
Owner
Haitao Lin
Haitao Lin
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021