This is an official source code for implementation on Extensive Deep Temporal Point Process

Related tags

Deep LearningEDTPP
Overview

Extensive Deep Temporal Point Process

This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed of the following three parts:

1. REVIEW on methods on deep temporal point process

2. PROPOSITION of a framework on Granger causality discovery

3. FAIR empirical study

Reviews

We first conclude the recent research topics on deep temporal point process as four parts:

· Encoding of history sequence

· Relational discovery of events

· Formulation of conditional intensity function

· Learning approaches for optimization

By dismantling representative methods into the four parts, we list their contributions on temporal point process.

Methods with the same learning approaches:

Methods History Encoder Intensity Function Relational Discovery Learning Approaches Released codes
RMTPP RNN Gompertz / MLE with SGD https://github.com/musically-ut/tf_rmtpp
ERTPP LSTM Gaussian / MLE with SGD https://github.com/xiaoshuai09/Recurrent-Point-Process
CTLSTM CTLSTM Exp-decay + softplus / MLE with SGD https://github.com/HMEIatJHU/neurawkes
FNNPP LSTM FNNIntegral / MLE with SGD https://github.com/omitakahiro/NeuralNetworkPointProcess
LogNormMix LSTM Log-norm Mixture / MLE with SGD https://github.com/shchur/ifl-tpp
SAHP Transformer Exp-decay + softplus Attention Matrix MLE with SGD https://github.com/QiangAIResearcher/sahp_repo
THP Transformer Linear + softplus Structure learning MLE with SGD https://github.com/SimiaoZuo/Transformer-Hawkes-Process
DGNPP Transformer Exp-decay + softplus Bilevel Structure learning MLE with SGD No available codes until now.

Methods focusing on learning approaches:

Expansions:

Granger causality framework

The workflows of the proposed granger causality framework:

Experiments shows improvements in fitting and predictive ability in type-wise intensity modeling settings. And the Granger causality graph can be obtained:

Learned Granger causality graph on Stack Overflow

Fair empirical study

The results is showed in the Section 6.3. Here we give an instruction on implementation.

Installation

Requiring packages:

pytorch=1.8.0=py3.8_cuda11.1_cudnn8.0.5_0
torchvision=0.9.0=py38_cu111
torch-scatter==2.0.8

Dataset

We provide the MOOC and Stack Overflow datasets in ./data/

And Retweet dataset can be downloaded from Google Drive. Download it and copy it into ./data/retweet/

To preprocess the data, run the following commands

python /scripts/generate_mooc_data.py
python /scripts/generate_stackoverflow_data.py
python /scripts/generate_retweet_data.py

Training

You can train the model with the following commands:

python main.py --config_path ./experiments/mooc/config.yaml
python main.py --config_path ./experiments/stackoverflow/config.yaml
python main.py --config_path ./experiments/retweet/config.yaml

The .yaml files consist following kwargs:

log_level: INFO

data:
  batch_size: The batch size for training
  dataset_dir: The processed dataset directory
  val_batch_size: The batch size for validation and test
  event_type_num: Number of the event types in the dataset. {'MOOC': 97, "Stack OverFlow": 22, "Retweet": 3}

model:
  encoder_type: Used history encoder, chosen in [FNet, RNN, LSTM, GRU, Attention]
  intensity_type: Used intensity function, chosen in [LogNormMix, GomptMix, LogCauMix, ExpDecayMix, WeibMix, GaussianMix] and 
        [LogNormMixSingle, GomptMixSingle, LogCauMixSingle, ExpDecayMixSingle, WeibMixSingle, GaussianMixSingle, FNNIntegralSingle],
        where *Single means modeling the overall intensities
  time_embed_type: Time embedding, chosen in [Linear, Trigono]
  embed_dim: Embeded dimension
  lag_step: Predefined lag step, which is only used when intra_encoding is true
  atten_heads: Attention heads, only used in Attention encoder, must be a divisor of embed_dim.
  layer_num: The layers number in the encoder and history encoder
  dropout: Dropout ratio, must be in 0.0-1.0
  gumbel_tau: Initial temperature in Gumbel-max
  l1_lambda: Weight to control the sparsity of Granger causality graph
  use_prior_graph: Only be true when the ganger graph is given, chosen in [true, false]
  intra_encoding: Whether to use intra-type encoding,  chosen in [true, false]

train:
  epochs: Training epoches
  lr: Initial learning rate
  log_dir: Diretory for logger
  lr_decay_ratio: The decay ratio of learning rate
  max_grad_norm: Max gradient norm
  min_learning_rate: Min learning rate
  optimizer: The optimizer to use, chosen in [adam]
  patience: Epoch for early stopping 
  steps: Epoch numbers for learning rate decay. 
  test_every_n_epochs: 10
  experiment_name: 'stackoverflow'
  delayed_grad_epoch: 10
  relation_inference: Whether to use graph discovery, chosen in [true, false],
        if false, but intra_encoding is true, the graph will be complete.
  
gpu: The GPU number to use for training

seed: Random Seed
Owner
Haitao Lin
Haitao Lin
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
LBK 20 Dec 02, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021