Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Overview

Diverse Image Captioning with Context-Object Split Latent Spaces

This repository is the PyTorch implementation of the paper:

Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Shweta Mahajan and Stefan Roth

We additionally include evaluation code from Luo et al. in the folder GoogleConceptualCaptioning , which has been patched for compatibility.

Requirements

The following code is written in Python 3.6.10 and CUDA 9.0.

Requirements:

  • torch 1.1.0
  • torchvision 0.3.0
  • nltk 3.5
  • inflect 4.1.0
  • tqdm 4.46.0
  • sklearn 0.0
  • h5py 2.10.0

To install requirements:

conda config --add channels pytorch
conda config --add channels anaconda
conda config --add channels conda-forge
conda config --add channels conda-forge/label/cf202003
conda create -n <environment_name> --file requirements.txt
conda activate <environment_name>

Preprocessed data

The dataset used in this project for assessing accuracy and diversity is COCO 2014 (m-RNN split). The full dataset is available here.

We use the Faster R-CNN features for images similar to Anderson et al.. We additionally require "classes"/"scores" fields detected for image regions. The classes correspond to Visual Genome.

Download instructions

Preprocessed training data is available here as hdf5 files. The provided hdf5 files contain the following fields:

  • image_id: ID of the COCO image
  • num_boxes: The proposal regions detected from Faster R-CNN
  • features: ResNet-101 features of the extracted regions
  • classes: Visual genome classes of the extracted regions
  • scores: Scores of the Visual genome classes of the extracted regions

Note that the ["image_id","num_boxes","features"] fields are identical to Anderson et al.

Create a folder named coco and download the preprocessed training and test datasets from the coco folder in the drive link above as follows (it is also possible to directly download the entire coco folder from the drive link):

  1. Download the following files for training on COCO 2014 (m-RNN split):
coco/coco_train_2014_adaptive_withclasses.h5
coco/coco_val_2014_adaptive_withclasses.h5
coco/coco_val_mRNN.txt
coco/coco_test_mRNN.txt
  1. Download the following files for training on held-out COCO (novel object captioning):
coco/coco_train_2014_noc_adaptive_withclasses.h5
coco/coco_train_extra_2014_noc_adaptive_withclasses.h5
  1. Download the following files for testing on held-out COCO (novel object captioning):
coco/coco_test_2014_noc_adaptive_withclasses.h5
  1. Download the (caption) annotation files and place them in a subdirectory coco/annotations (mirroring the Google drive folder structure)
coco/annotations/captions_train2014.json
coco/annotations/captions_val2014.json
  1. Download the following files from the drive link in a seperate folder data (outside coco). These files contain the contextual neighbours for pseudo supervision:
data/nn_final.pkl
data/nn_noc.pkl

For running the train/test scripts (described in the following) "pathToData"/"nn_dict_path" in params.json and params_noc.json needs to be set to the coco/data folder created above.

Verify Folder Structure after Download

The folder structure of coco after data download should be as follows,

coco
 - annotations
   - captions_train2014.json
   - captions_val2014.json
 - coco_val_mRNN.txt
 - coco_test_mRNN.txt
 - coco_train_2014_adaptive_withclasses.h5
 - coco_val_2014_adaptive_withclasses.h5
 - coco_train_2014_noc_adaptive_withclasses.h5
 - coco_train_extra_2014_noc_adaptive_withclasses.h5
 - coco_test_2014_noc_adaptive_withclasses.h5
data
 - coco_classname.txt
 - visual_genome_classes.txt
 - vocab_coco_full.pkl
 - nn_final.pkl
 - nn_noc.pkl

Training

Please follow the following instructions for training:

  1. Set hyperparameters for training in params.json and params_noc.json.
  2. Train a model on COCO 2014 for captioning,
   	python ./scripts/train.py
  1. Train a model for diverse novel object captioning,
   	python ./scripts/train_noc.py

Please note that the data folder provides the required vocabulary.

Memory requirements

The models were trained on a single nvidia V100 GPU with 32 GB memory. 16 GB is sufficient for training a single run.

Pre-trained models and evaluation

We provide pre-trained models for both captioning on COCO 2014 (mRNN split) and novel object captioning. Please follow the following steps:

  1. Download the pre-trained models from here to the ckpts folder.

  2. For evaluation of oracle scores and diversity, we follow Luo et al.. In the folder GoogleConceptualCaptioning download the cider and in the cococaption folder run the download scripts,

   	./GoogleConceptualCaptioning/cococaption/get_google_word2vec_model.sh
   	./GoogleConceptualCaptioning/cococaption/get_stanford_models.sh
   	python ./scripts/eval.py
  1. For diversity evaluation create the required numpy file for consensus re-ranking using,
   	python ./scripts/eval_diversity.py

For consensus re-ranking follow the steps here. To obtain the final diversity scores, follow the instructions of DiversityMetrics. Convert the numpy file to required json format and run the script evalscripts.py

  1. To evaluate the F1 score for novel object captioning,
   	python ./scripts/eval_noc.py

Results

Oracle evaluation on the COCO dataset

B4 B3 B2 B1 CIDEr METEOR ROUGE SPICE
COS-CVAE 0.633 0.739 0.842 0.942 1.893 0.450 0.770 0.339

Diversity evaluation on the COCO dataset

Unique Novel mBLEU Div-1 Div-2
COS-CVAE 96.3 4404 0.53 0.39 0.57

F1-score evaluation on the held-out COCO dataset

bottle bus couch microwave pizza racket suitcase zebra average
COS-CVAE 35.4 83.6 53.8 63.2 86.7 69.5 46.1 81.7 65.0

Bibtex

@inproceedings{coscvae20neurips,
  title     = {Diverse Image Captioning with Context-Object Split Latent Spaces},
  author    = {Mahajan, Shweta and Roth, Stefan},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2020}
}
Owner
Visual Inference Lab @TU Darmstadt
Visual Inference Lab @TU Darmstadt
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022