Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Related tags

Deep Learningautowu
Overview

Automated Learning Rate Scheduler for Large-Batch Training

The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML).

Overview

AutoWU is an automated LR scheduler which consists of two phases: warmup and decay. Learning rate (LR) is increased in an exponential rate until the loss starts to increase, and in the decay phase LR is decreased following the pre-specified type of the decay (either cosine or constant-then-cosine, in our experiments).

Transition from the warmup to the decay phase is done automatically by testing whether the minimum of the predicted loss curve is attained in the past or not with high probability, and the prediction is made via Gaussian Process regression.

Diagram summarizing AutoWU

How to use

Setup

pip install -r requirements.txt

Quick use

You can use AutoWU as other PyTorch schedulers, except that it takes loss as an argument (like ReduceLROnPlateau in PyTorch). The following code snippet demonstrates a typical usage of AutoWU.

from autowu import AutoWU

...

scheduler = AutoWU(optimizer,
                   len(train_loader),  # the number of steps in one epoch 
                   total_epochs,  # total number of epochs
                   immediate_cooldown=True,
                   cooldown_type='cosine',
                   device=device)

...

for _ in range(total_epochs):
    for inputs, targets in train_loader:
        loss = loss_fn(model(inputs), targets)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        scheduler.step(loss)

The default decay phase schedule is ''cosine''. To use constant-then-cosine schedule rather than cosine, set immediate_cooldown=False and set cooldown_fraction to a desired value:

scheduler = AutoWU(optimizer,
                   len(train_loader),  # the number of steps in one epoch 
                   total_epochs,  # total number of epochs
                   immediate_cooldown=False,
                   cooldown_type='cosine',
                   cooldown_fraction=0.2,  # fraction of cosine decay at the end
                   device=device)

Reproduction of results

We provide an exemplar training script train.py which is based on Pytorch Image Models. The script supports training ResNet-50 and EfficientNet-B0 on ImageNet classification under the setting almost identical to the paper. We report the top-1 accuracy of ResNet-50 and EfficientNet-B0 on the validation set trained with batch sizes 4K (4096) and 16K (16384), along with the scores reported in our paper.

ResNet-50 This repo. Reported (paper)
4K 75.54% 75.70%
16K 74.87% 75.22%
EfficientNet-B0 This repo. Reported (paper)
4K 75.74% 75.81%
16K 75.66% 75.44%

You can use distributed.launch util to run the script. For instance, in case of ResNet-50 training with batch size 4096, execute the following line with variables set according to your environment:

python -m torch.distributed.launch \
--nproc_per_node=4 \
--nnodes=4 \
--node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR \
--master_port=$MASTER_PORT \
train.py \
--data-root $DATA_ROOT \
--amp \
--batch-size 256 

In addition, add --model efficientnet_b0 argument in case of EfficientNet-B0 training.

Citation

@inproceedings{
    kim2021automated,
    title={Automated Learning Rate Scheduler for Large-batch Training},
    author={Chiheon Kim and Saehoon Kim and Jongmin Kim and Donghoon Lee and Sungwoong Kim},
    booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)},
    year={2021},
    url={https://openreview.net/forum?id=ljIl7KCNYZH}
}

License

This project is licensed under the terms of Apache License 2.0. Copyright 2021 Kakao Brain. All right reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022