Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Related tags

Deep LearningGADA
Overview

Geometrically Adaptive Dictionary Attack on Face Recognition

This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV2022).

Getting started

Dependencies

The code of GADA uses various packages such as Python 3.7, Pytorch 1.6.0, cython=0.29.21, and it is easy to install them by copying the existing environment to the current system to install them easily.

We have saved the conda environment for both Windows and Ubuntu, and you can copy the conda environment to the current system. You can install the conda environment by entering the following command at the conda prompt.

conda env create -f GADA_ubuntu.yml

After setting the environment, you may need to compile the 3D renderer by entering the command.

At the '_3DDFA_V2\Sim3DR' path

python setup.py build_ext --inplace

Since 3D Renderer has already been compiled on Windows and Ubuntu, there may be no problem in running the experiment without executing the above command.

Pretrained face recognition models

You can download the pretrained face recogntion models from face.evoLVe and CurricularFace

After downloading the checkpoint files, place 'backbone_ir50_ms1m_epoch120.pth' into '/checkpoint/ms1m-ir50/' and 'CurricularFace_Backbone.pth' into '/checkpoint/'

Dataset

You can download test image sequences for the LFW and CPLFW datasets from the following links.

LFW test image sequence

CPLFW test image sequence

Place them into the root folder of the project.

Each image sequence has 500 image pairs for dodging and impersonation attack.

These images are curated from the aligned face datasets provided by face.evoLVe.

Usage

You can perform an attack experiment by entering the following command.

python attack.py --model=2 --attack=EAGD --dataset=LFW

The model argument is the index of the target facial recognition model.

1: CurricularFace ResNet-100, 2: ArcFace ResNet-50, 3: FaceNet

The attack argument indicates the attack method.

HSJA, SO, EA, EAD, EAG, EAGD, EAG, EAGDR, EAGDO, SFA, SFAD, SFAG, SFAGD

If --targeted is given as an execution argument, impersonation attack is performed. If no argument is given, dodging attack is performed by default.

The dataset argument sets which test dataset to use and supports LFW and CPLFW.

If you want to enable stateful detection as a defense, pass the --defense=SD argument to the command line.

When an experiment is completed for 500 test images, a 'Dataset_NumImages_targeted_attackname_targetmodel_defense_.pth' file is created in the results folder like 'CPLFW_500_1_EVGD_IR_50_gaussian_.pth'.

Using plotter.py, you can load the above saved file and print various results, such as the l2 norm of perturbation at 1000, 2000, 5000, and 10000 steps, the average number of queries until the l2 norm of perturbation becomes 2 or 4, adversarial examples, etc.

Citation

If you find this work useful, please consider citing our paper :) We provide a BibTeX entry of our paper below:

    @article{byun2021geometrically,
    title={Geometrically Adaptive Dictionary Attack on Face Recognition},
    author={Byun, Junyoung and Go, Hyojun and Kim, Changick},
    journal={arXiv preprint arXiv:2111.04371},
    year={2021}
    }

Acknowledgement

Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022