Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Overview

Data Efficient Stagewise Knowledge Distillation

Stagewise Training Procedure

Table of Contents

This repository presents the code implementation for Stagewise Knowledge Distillation, a technique for improving knowledge transfer between a teacher model and student model.

Requirements

  • Install the dependencies using conda with the requirements.yml file
    conda env create -f environment.yml
    
  • Setup the stagewise-knowledge-distillation package itself
    pip install -e .
    
  • Apart from the above mentioned dependencies, it is recommended to have an Nvidia GPU (CUDA compatible) with at least 8 GB of video memory (most of the experiments will work with 6 GB also). However, the code works with CPU only machines as well.

Image Classification

Introduction

In this work, ResNet architectures are used. Particularly, we used ResNet10, 14, 18, 20 and 26 as student networks and ResNet34 as the teacher network. The datasets used are CIFAR10, Imagenette and Imagewoof. Note that Imagenette and Imagewoof are subsets of ImageNet.

Preparation

  • Before any experiments, you need to download the data and saved weights of teacher model to appropriate locations.

  • The following script

    • downloads the datasets
    • saves 10%, 20%, 30% and 40% splits of each dataset separately
    • downloads teacher model weights for all 3 datasets
    # assuming you are in the root folder of the repository
    cd image_classification/scripts
    bash setup.sh
    

Experiments

For detailed information on the various experiments, refer to the paper. In all the image classification experiments, the following common training arguments are listed with the possible values they can take:

  • dataset (-d) : imagenette, imagewoof, cifar10
  • model (-m) : resnet10, resnet14, resnet18, resnet20, resnet26, resnet34
  • number of epochs (-e) : Integer is required
  • percentage of dataset (-p) : 10, 20, 30, 40 (don't use this argument at all for full dataset experiments)
  • random seed (-s) : Give any random seed (for reproducibility purposes)
  • gpu (-g) : Don't use unless training on CPU (in which case, use -g 'cpu' as the argument). In case of multi-GPU systems, run CUDA_VISIBLE_DEVICES=id in the terminal before the experiment, where id is the ID of your GPU according to nvidia-smi output.
  • Comet ML API key (-a) (optional) : If you want to use Comet ML for tracking your experiments, then either put your API key as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.
  • Comet ML workspace (-w) (optional) : If you want to use Comet ML for tracking your experiments, then either put your workspace name as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.

In the following subsections, example commands for training are given for one experiment each.

No Teacher

Full Imagenette dataset, ResNet10

python3 no_teacher.py -d imagenette -m resnet10 -e 100 -s 0

Traditional KD (FitNets)

20% Imagewoof dataset, ResNet18

python3 traditional_kd.py -d imagewoof -m resnet18 -p 20 -e 100 -s 0

FSP KD

30% CIFAR10 dataset, ResNet14

python3 fsp_kd.py -d cifar10 -m resnet14 -p 30 -e 100 -s 0

Attention Transfer KD

10% Imagewoof dataset, ResNet26

python3 attention_transfer_kd.py -d imagewoof -m resnet26 -p 10 -e 100 -s 0

Hinton KD

Full CIFAR10 dataset, ResNet14

python3 hinton_kd.py -d cifar10 -m resnet14 -e 100 -s 0

Simultaneous KD (Proposed Baseline)

40% Imagenette dataset, ResNet20

python3 simultaneous_kd.py -d imagenette -m resnet20 -p 40 -e 100 -s 0

Stagewise KD (Proposed Method)

Full CIFAR10 dataset, ResNet10

python3 stagewise_kd.py -d cifar10 -m resnet10 -e 100 -s 0

Semantic Segmentation

Introduction

In this work, ResNet backbones are used to construct symmetric U-Nets for semantic segmentation. Particularly, we used ResNet10, 14, 18, 20 and 26 as the backbones for student networks and ResNet34 as the backbone for the teacher network. The dataset used is the Cambridge-driving Labeled Video Database (CamVid).

Preparation

  • The following script
    • downloads the data (and shifts it to appropriate folder)
    • saves 10%, 20%, 30% and 40% splits of each dataset separately
    • downloads the pretrained teacher weights in appropriate folder
    # assuming you are in the root folder of the repository
    cd semantic_segmentation/scripts
    bash setup.sh
    

Experiments

For detailed information on the various experiments, refer to the paper. In all the semantic segmentation experiments, the following common training arguments are listed with the possible values they can take:

  • dataset (-d) : camvid
  • model (-m) : resnet10, resnet14, resnet18, resnet20, resnet26, resnet34
  • number of epochs (-e) : Integer is required
  • percentage of dataset (-p) : 10, 20, 30, 40 (don't use this argument at all for full dataset experiments)
  • random seed (-s) : Give any random seed (for reproducibility purposes)
  • gpu (-g) : Don't use unless training on CPU (in which case, use -g 'cpu' as the argument). In case of multi-GPU systems, run CUDA_VISIBLE_DEVICES=id in the terminal before the experiment, where id is the ID of your GPU according to nvidia-smi output.
  • Comet ML API key (-a) (optional) : If you want to use Comet ML for tracking your experiments, then either put your API key as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.
  • Comet ML workspace (-w) (optional) : If you want to use Comet ML for tracking your experiments, then either put your workspace name as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.

Note: Currently, there are no plans for adding Attention Transfer KD and FSP KD experiments for semantic segmentation.

In the following subsections, example commands for training are given for one experiment each.

No Teacher

Full CamVid dataset, ResNet10

python3 pretrain.py -d camvid -m resnet10 -e 100 -s 0

Traditional KD (FitNets)

20% CamVid dataset, ResNet18

python3 traditional_kd.py -d camvid -m resnet18 -p 20 -e 100 -s 0

Simultaneous KD (Proposed Baseline)

40% CamVid dataset, ResNet20

python3 simultaneous_kd.py -d camvid -m resnet20 -p 40 -e 100 -s 0

Stagewise KD (Proposed Method)

10 % CamVid dataset, ResNet10

python3 stagewise_kd.py -d camvid -m resnet10 -p 10 -e 100 -s 0

Citation

If you use this code or method in your work, please cite using

@misc{kulkarni2020data,
      title={Data Efficient Stagewise Knowledge Distillation}, 
      author={Akshay Kulkarni and Navid Panchi and Sharath Chandra Raparthy and Shital Chiddarwar},
      year={2020},
      eprint={1911.06786},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Built by Akshay Kulkarni, Navid Panchi and Sharath Chandra Raparthy.

Owner
IvLabs
Robotics and AI community of VNIT
IvLabs
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022