Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Overview

Data Efficient Stagewise Knowledge Distillation

Stagewise Training Procedure

Table of Contents

This repository presents the code implementation for Stagewise Knowledge Distillation, a technique for improving knowledge transfer between a teacher model and student model.

Requirements

  • Install the dependencies using conda with the requirements.yml file
    conda env create -f environment.yml
    
  • Setup the stagewise-knowledge-distillation package itself
    pip install -e .
    
  • Apart from the above mentioned dependencies, it is recommended to have an Nvidia GPU (CUDA compatible) with at least 8 GB of video memory (most of the experiments will work with 6 GB also). However, the code works with CPU only machines as well.

Image Classification

Introduction

In this work, ResNet architectures are used. Particularly, we used ResNet10, 14, 18, 20 and 26 as student networks and ResNet34 as the teacher network. The datasets used are CIFAR10, Imagenette and Imagewoof. Note that Imagenette and Imagewoof are subsets of ImageNet.

Preparation

  • Before any experiments, you need to download the data and saved weights of teacher model to appropriate locations.

  • The following script

    • downloads the datasets
    • saves 10%, 20%, 30% and 40% splits of each dataset separately
    • downloads teacher model weights for all 3 datasets
    # assuming you are in the root folder of the repository
    cd image_classification/scripts
    bash setup.sh
    

Experiments

For detailed information on the various experiments, refer to the paper. In all the image classification experiments, the following common training arguments are listed with the possible values they can take:

  • dataset (-d) : imagenette, imagewoof, cifar10
  • model (-m) : resnet10, resnet14, resnet18, resnet20, resnet26, resnet34
  • number of epochs (-e) : Integer is required
  • percentage of dataset (-p) : 10, 20, 30, 40 (don't use this argument at all for full dataset experiments)
  • random seed (-s) : Give any random seed (for reproducibility purposes)
  • gpu (-g) : Don't use unless training on CPU (in which case, use -g 'cpu' as the argument). In case of multi-GPU systems, run CUDA_VISIBLE_DEVICES=id in the terminal before the experiment, where id is the ID of your GPU according to nvidia-smi output.
  • Comet ML API key (-a) (optional) : If you want to use Comet ML for tracking your experiments, then either put your API key as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.
  • Comet ML workspace (-w) (optional) : If you want to use Comet ML for tracking your experiments, then either put your workspace name as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.

In the following subsections, example commands for training are given for one experiment each.

No Teacher

Full Imagenette dataset, ResNet10

python3 no_teacher.py -d imagenette -m resnet10 -e 100 -s 0

Traditional KD (FitNets)

20% Imagewoof dataset, ResNet18

python3 traditional_kd.py -d imagewoof -m resnet18 -p 20 -e 100 -s 0

FSP KD

30% CIFAR10 dataset, ResNet14

python3 fsp_kd.py -d cifar10 -m resnet14 -p 30 -e 100 -s 0

Attention Transfer KD

10% Imagewoof dataset, ResNet26

python3 attention_transfer_kd.py -d imagewoof -m resnet26 -p 10 -e 100 -s 0

Hinton KD

Full CIFAR10 dataset, ResNet14

python3 hinton_kd.py -d cifar10 -m resnet14 -e 100 -s 0

Simultaneous KD (Proposed Baseline)

40% Imagenette dataset, ResNet20

python3 simultaneous_kd.py -d imagenette -m resnet20 -p 40 -e 100 -s 0

Stagewise KD (Proposed Method)

Full CIFAR10 dataset, ResNet10

python3 stagewise_kd.py -d cifar10 -m resnet10 -e 100 -s 0

Semantic Segmentation

Introduction

In this work, ResNet backbones are used to construct symmetric U-Nets for semantic segmentation. Particularly, we used ResNet10, 14, 18, 20 and 26 as the backbones for student networks and ResNet34 as the backbone for the teacher network. The dataset used is the Cambridge-driving Labeled Video Database (CamVid).

Preparation

  • The following script
    • downloads the data (and shifts it to appropriate folder)
    • saves 10%, 20%, 30% and 40% splits of each dataset separately
    • downloads the pretrained teacher weights in appropriate folder
    # assuming you are in the root folder of the repository
    cd semantic_segmentation/scripts
    bash setup.sh
    

Experiments

For detailed information on the various experiments, refer to the paper. In all the semantic segmentation experiments, the following common training arguments are listed with the possible values they can take:

  • dataset (-d) : camvid
  • model (-m) : resnet10, resnet14, resnet18, resnet20, resnet26, resnet34
  • number of epochs (-e) : Integer is required
  • percentage of dataset (-p) : 10, 20, 30, 40 (don't use this argument at all for full dataset experiments)
  • random seed (-s) : Give any random seed (for reproducibility purposes)
  • gpu (-g) : Don't use unless training on CPU (in which case, use -g 'cpu' as the argument). In case of multi-GPU systems, run CUDA_VISIBLE_DEVICES=id in the terminal before the experiment, where id is the ID of your GPU according to nvidia-smi output.
  • Comet ML API key (-a) (optional) : If you want to use Comet ML for tracking your experiments, then either put your API key as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.
  • Comet ML workspace (-w) (optional) : If you want to use Comet ML for tracking your experiments, then either put your workspace name as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.

Note: Currently, there are no plans for adding Attention Transfer KD and FSP KD experiments for semantic segmentation.

In the following subsections, example commands for training are given for one experiment each.

No Teacher

Full CamVid dataset, ResNet10

python3 pretrain.py -d camvid -m resnet10 -e 100 -s 0

Traditional KD (FitNets)

20% CamVid dataset, ResNet18

python3 traditional_kd.py -d camvid -m resnet18 -p 20 -e 100 -s 0

Simultaneous KD (Proposed Baseline)

40% CamVid dataset, ResNet20

python3 simultaneous_kd.py -d camvid -m resnet20 -p 40 -e 100 -s 0

Stagewise KD (Proposed Method)

10 % CamVid dataset, ResNet10

python3 stagewise_kd.py -d camvid -m resnet10 -p 10 -e 100 -s 0

Citation

If you use this code or method in your work, please cite using

@misc{kulkarni2020data,
      title={Data Efficient Stagewise Knowledge Distillation}, 
      author={Akshay Kulkarni and Navid Panchi and Sharath Chandra Raparthy and Shital Chiddarwar},
      year={2020},
      eprint={1911.06786},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Built by Akshay Kulkarni, Navid Panchi and Sharath Chandra Raparthy.

Owner
IvLabs
Robotics and AI community of VNIT
IvLabs
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022