Interactive Image Generation via Generative Adversarial Networks

Overview

iGAN: Interactive Image Generation via Generative Adversarial Networks

Project | Youtube | Paper

Recent projects:
[pix2pix]: Torch implementation for learning a mapping from input images to output images.
[CycleGAN]: Torch implementation for learning an image-to-image translation (i.e., pix2pix) without input-output pairs.
[pytorch-CycleGAN-and-pix2pix]: PyTorch implementation for both unpaired and paired image-to-image translation.

Overview

iGAN (aka. interactive GAN) is the author's implementation of interactive image generation interface described in:
"Generative Visual Manipulation on the Natural Image Manifold"
Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, Alexei A. Efros
In European Conference on Computer Vision (ECCV) 2016

Given a few user strokes, our system could produce photo-realistic samples that best satisfy the user edits in real-time. Our system is based on deep generative models such as Generative Adversarial Networks (GAN) and DCGAN. The system serves the following two purposes:

  • An intelligent drawing interface for automatically generating images inspired by the color and shape of the brush strokes.
  • An interactive visual debugging tool for understanding and visualizing deep generative models. By interacting with the generative model, a developer can understand what visual content the model can produce, as well as the limitation of the model.

Please cite our paper if you find this code useful in your research. (Contact: Jun-Yan Zhu, junyanz at mit dot edu)

Getting started

  • Install the python libraries. (See Requirements).
  • Download the code from GitHub:
git clone https://github.com/junyanz/iGAN
cd iGAN
  • Download the model. (See Model Zoo for details):
bash ./models/scripts/download_dcgan_model.sh outdoor_64
  • Run the python script:
THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_main.py --model_name outdoor_64

Requirements

The code is written in Python2 and requires the following 3rd party libraries:

sudo apt-get install python-opencv
sudo pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git
  • PyQt4: more details on Qt installation can be found here
sudo apt-get install python-qt4
sudo pip install qdarkstyle
sudo pip install dominate
  • GPU + CUDA + cuDNN: The code is tested on GTX Titan X + CUDA 7.5 + cuDNN 5. Here are the tutorials on how to install CUDA and cuDNN. A decent GPU is required to run the system in real-time. [Warning] If you run the program on a GPU server, you need to use remote desktop software (e.g., VNC), which may introduce display artifacts and latency problem.

Python3

For Python3 users, you need to replace pip with pip3:

  • PyQt4 with Python3:
sudo apt-get install python3-pyqt4
  • OpenCV3 with Python3: see the installation instruction.

Interface:

See [Youtube] at 2:18s for the interactive image generation demos.

Layout

  • Drawing Pad: This is the main window of our interface. A user can apply different edits via our brush tools, and the system will display the generated image. Check/Uncheck Edits button to display/hide user edits.
  • Candidate Results: a display showing thumbnails of all the candidate results (e.g., different modes) that fits the user edits. A user can click a mode (highlighted by a green rectangle), and the drawing pad will show this result.
  • Brush Tools: Coloring Brush for changing the color of a specific region; Sketching brush for outlining the shape. Warping brush for modifying the shape more explicitly.
  • Slider Bar: drag the slider bar to explore the interpolation sequence between the initial result (i.e., randomly generated image) and the current result (e.g., image that satisfies the user edits).
  • Control Panel: Play: play the interpolation sequence; Fix: use the current result as additional constraints for further editing Restart: restart the system; Save: save the result to a webpage. Edits: Check the box if you would like to show the edits on top of the generated image.

User interaction

  • Coloring Brush: right-click to select a color; hold left click to paint; scroll the mouse wheel to adjust the width of the brush.
  • Sketching Brush: hold left-click to sketch the shape.
  • Warping Brush: We recommend you first use coloring and sketching before the warping brush. Right-click to select a square region; hold left click to drag the region; scroll the mouse wheel to adjust the size of the square region.
  • Shortcuts: P for Play, F for Fix, R for Restart; S for Save; E for Edits; Q for quitting the program.
  • Tooltips: when you move the cursor over a button, the system will display the tooltip of the button.

Model Zoo:

Download the Theano DCGAN model (e.g., outdoor_64). Before using our system, please check out the random real images vs. DCGAN generated samples to see which kind of images that a model can produce.

bash ./models/scripts/download_dcgan_model.sh outdoor_64

We provide a simple script to generate samples from a pre-trained DCGAN model. You can run this script to test if Theano, CUDA, cuDNN are configured properly before running our interface.

THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python generate_samples.py --model_name outdoor_64 --output_image outdoor_64_dcgan.png

Command line arguments:

Type python iGAN_main.py --help for a complete list of the arguments. Here we discuss some important arguments:

  • --model_name: the name of the model (e.g., outdoor_64, shoes_64, etc.)
  • --model_type: currently only supports dcgan_theano.
  • --model_file: the file that stores the generative model; If not specified, model_file='./models/%s.%s' % (model_name, model_type)
  • --top_k: the number of the candidate results being displayed
  • --average: show an average image in the main window. Inspired by AverageExplorer, average image is a weighted average of multiple generated results, with the weights reflecting user-indicated importance. You can switch between average mode and normal mode by press A.
  • --shadow: We build a sketching assistance system for guiding the freeform drawing of objects inspired by ShadowDraw To use the interface, download the model hed_shoes_64 and run the following script
THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_main.py --model_name hed_shoes_64 --shadow --average

Dataset and Training

See more details here

Projecting an Image onto Latent Space

We provide a script to project an image into latent space (i.e., x->z):

  • Download the pre-trained AlexNet model (conv4):
bash models/scripts/download_alexnet.sh conv4
  • Run the following script with a model and an input image. (e.g., model: shoes_64.dcgan_theano, and input image ./pics/shoes_test.png)
THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_predict.py --model_name shoes_64 --input_image ./pics/shoes_test.png --solver cnn_opt
  • Check the result saved in ./pics/shoes_test_cnn_opt.png
  • We provide three methods: opt for optimization method; cnn for feed-forward network method (fastest); cnn_opt hybrid of the previous methods (default and best). Type python iGAN_predict.py --help for a complete list of the arguments.

Script without UI

We also provide a standalone script that should work without UI. Given user constraints (i.e., a color map, a color mask, and an edge map), the script generates multiple images that mostly satisfy the user constraints. See python iGAN_script.py --help for more details.

THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_script.py --model_name outdoor_64

Citation

@inproceedings{zhu2016generative,
  title={Generative Visual Manipulation on the Natural Image Manifold},
  author={Zhu, Jun-Yan and Kr{\"a}henb{\"u}hl, Philipp and Shechtman, Eli and Efros, Alexei A.},
  booktitle={Proceedings of European Conference on Computer Vision (ECCV)},
  year={2016}
}

Cat Paper Collection

If you love cats, and love reading cool graphics, vision, and learning papers, please check out our Cat Paper Collection:
[Github] [Webpage]

Acknowledgement

  • We modified the DCGAN code in our package. Please cite the original DCGAN paper if you use their models.
  • This work was supported, in part, by funding from Adobe, eBay, and Intel, as well as a hardware grant from NVIDIA. J.-Y. Zhu is supported by Facebook Graduate Fellowship.
Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
571 Dec 25, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022