Datasets for new state-of-the-art challenge in disentanglement learning

Overview

High resolution disentanglement datasets

This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for controllable generation in terms of image resolution, photorealism, and richness of style factors, as compared to existing disentanglement datasets.

Falor3D

The Falcor3D dataset consists of 233,280 images based on the 3D scene of a living room, where each image has a resolution of 1024x1024. The meta code corresponds to all possible combinations of 7 factors of variation:

  • lighting_intensity (5)
  • lighting_x-dir (6)
  • lighting_y-dir (6)
  • lighting_z-dir (6)
  • camera_x-pos (6)
  • camera_y-pos (6)
  • camera_z-pos (6)

Note that the number m behind each factor represents that the factor has m possible values, uniformly sampled in the normalized range of variations [0, 1].

Each image has as filename padded_index.png where

index = lighting_intensity * 46656 + lighting_x-dir * 7776 + lighting_y-dir * 1296 + 
lighting_z-dir * 216 + camera_x-pos * 36 + camera_y-pos * 6 + camera_z-pos

padded_index = index padded with zeros such that it has 6 digits.

To see the Falcor3D images by varying each factor of variation individually, you can run

python dataset_demo.py --dataset Falor3D

and the results are saved in the examples/falcor3d_samples folder.

You can also check out the Falcor3D images here: falcor3d_samples_demo, which includes all the ground-truth latent traversals.

Isaac3D

The Isaac3D dataset consists of 737,280 images, based on the 3D scene of a kitchen, where each image has a resolution of 512x512. The meta code corresponds to all possible combinations of 9 factors of variation:

  • object_shape (3)
  • object_scale (4)
  • camera_height (4)
  • robot_x-movement (8)
  • robot_y-movement (5)
  • lighting_intensity (4)
  • lighting_y-dir (6)
  • object_color (4)
  • wall_color (4)

Similarly, the number m behind each factor represents that the factor has m possible values, uniformly sampled in the normalized range of variations [0, 1].

Each image has as filename padded_index.png where

index = object_shape * 245760 + object_scale * 30720 + camera_height * 6144 + 
robot_x-movement * 1536 + robot_y-movement * 384 + lighting_intensity * 96 + 
lighting_y-dir * 16 + object_color * 4 + wall color

padded_index = index padded with zeros such that it has 6 digits.

To see the Isaac3D images by varying each factor of variation individually, you can run

python dataset_demo.py --dataset Isaac3D

and the results are saved in the examples/isaac3d_samples folder.

You can also check out the Isaac3D images here: isaac3d_samples_demo, which includes all the ground-truth latent traversals.

Links to datasets

The two datasets can be downloaded from Google Drive:

  • Falcor3D (98 GB): link
  • Isaac3D (190 GB): link

Besides, we also provide a downsampled version (resolution 128x128) of the two datasets:

  • Falcor3D_128x128 (3.7 GB): link
  • Isaac3D_128x128 (13 GB): link

License

This work is licensed under a Creative Commons Attribution 4.0 International License by NVIDIA Corporation (https://creativecommons.org/licenses/by/4.0/).

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022