This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Related tags

Deep LearningOrion
Overview

Open Rule Induction

image

This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Abstract

Rules have a number of desirable properties. It is easy to understand, infer new knowledge, and communicate with other inference systems. One weakness of the previous rule induction systems is that they only find rules within a knowledge base (KB) and therefore cannot generalize to more open and complex real-world rules. Recently, the language model (LM)-based rule generation are proposed to enhance the expressive power of the rules. In this paper, we revisit the differences between KB-based rule induction and LM-based rule generation. We argue that, while KB-based methods inducted rules by discovering data commonalitiess, the current LM-based methods are “learning rules from rules”. This limits these methods to only produce “canned” rules whose patterns are constrained by the annotated rules, while discarding the rich expressive power of LMs for free text.

Therefore, in this paper, we propose the open rule induction problem, which aims to induce open rules utilizing the knowledge in LMs. Besides, we propose the Orion (open rule induction) system to automatically mine open rules from LMs without supervision of annotated rules. We conducted extensive experiments to verify the quality and quantity of the inducted open rules. Surprisingly, when applying the open rules in downstream tasks (i.e. relation extraction), these automatically inducted rules even outperformed the manually annotated rules.

Dependencies

To install requirements:

conda env create -f environment.yml
conda activate orion

Download the Orion

We have released the continue trained models for $P(ins|r_p)$ and $P(r_h|ins)$, you could just download them following the steps:

mkdir models
cd models

Then you should download two parts of Orion to here.

  1. Download model for $P(ins|r_p)$ from here

  2. Download model for $P(r_h|ins)$ from here

Evaluate for OpenRule155

To evaluate Orion's performance on OpenRule155 or other relation extraction datasets, run this command:

python evaluation.py --task openrule155 --inductor rule --mlm_training True --bart_training True --group_beam True

Evaluate for Relation Extraction

To evaluate Orion's performance on other relation extraction datasets, run this command:

python evaluation.py --task <task> --inductor rule --mlm_training True --bart_training True --group_beam True

Evaluate for costomize rule

If you want to experience it with your costomize rules, follow this:

from inductor import BartInductor

inductor = BartInductor()

rule = '<mask> is the capital of <mask>.'
generated_texts = inductor.generate(rule)

print('output generated rules:')
for text in generated_texts:
    print(text)

# output generated rules:
# <mask> is the capital and largest city of <mask>.
# <mask> is the largest city in <mask>.
# <mask> is the most populous state in <mask>.
# <mask> is the capital of <mask>.
# <mask> is a state in <mask>.
# <mask> is a capital of <mask>.
# <mask> has one of the highest rates of poverty in <mask>.
# <mask> is a major commercial and financial centre of <mask>.
# <mask> was then a part of <mask>.
# <mask>, the capital of the country, is the largest city in <mask>.
Owner
Xingran Chen
: )
Xingran Chen
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023