Active and Sample-Efficient Model Evaluation

Overview

Active Testing: Sample-Efficient Model Evaluation

Hi, good to see you here! 👋

This is code for "Active Testing: Sample-Efficient Model Evaluation".

Please cite our paper, if you find this helpful:

@article{kossen2021active,
  title={{A}ctive {T}esting: {S}ample-{E}fficient {M}odel {E}valuation},
  author={Kossen, Jannik and Farquhar, Sebastian and Gal, Yarin and Rainforth, Tom},
  journal={arXiv:2103.05331},
  year={2021}
}

animation

Setup

The requirements.txt can be used to set up a python environment for this codebase. You can do this, for example, with conda:

conda create -n isactive python=3.8
conda activate isactive
pip install -r requirements.txt

Reproducing the Experiments

  • To reproduce a figure of the paper, first run the appropriate experiments
sh reproduce/experiments/figure-X.sh
  • And then create the plots with the Jupyter Notebook at
notebooks/plots_paper.ipynb
  • (The notebook let's you conveniently select which plots to recreate.)

  • Which should put plots into notebooks/plots/.

  • In the above, replace X by

    • 123 for Figures 1, 2, 3
    • 4 for Figure 4
    • 5 for Figure 5
    • 6 for Figure 6
    • 7 for Figure 7
  • Other notes

    • Synthetic data experiments do not require GPUs and should run on pretty much all recent hardware.
    • All other plots, realistically speaking, require GPUs.
    • We are also happy to share a 4 GB file with results from all experiments presented in the paper.
    • You may want to produce plots 7 and 8 for other experiment setups than the one in the paper, i.e. ones you already have computed.
    • Some experiments, e.g. those for Figures 4 or 6, may run a really long time on a single GPU. It may be good to
      • execute the scripts in the sh-files in parallel on multiple GPUs.
      • start multiple runs in parallel and then combine experiments. (See below).
      • end the runs early / decrease number of total runs (this can be very reasonable -- look at the config files in conf/paper to modify this property)
    • If you want to understand the code, below we give a good strategy for approaching it. (Also start with synthetic data experiments. They have less complex code!)

Running A Custom Experiment

  • main.py is the main entry point into this code-base.

    • It executes a a total of n_runs active testing experiments for a fixed setup.
    • Each experiment:
      • Trains (or loads) one main model.
      • This model can then be evaluated with a variety of acquisition strategies.
      • Risk estimates are then computed for points/weights from all acquisition strategies for all risk estimators.
  • This repository uses Hydra to manage configs.

    • Look at conf/config.yaml or one of the experiments in conf/... for default configs and hyperparameters.
    • Experiments are autologged and results saved to ./output/.
  • See notebooks/eplore_experiment.ipynb for some example code on how to evaluate custom experiments.

    • The evaluations use activetesting.visualize.Visualiser which implements visualisation methods.
    • Give it a path to an experiment in output/path/to/experiment and explore the methods.
    • If you want to combine data from multiple runs, give it a list of paths.
    • I prefer to load this in Jupyter Notebooks, but hey, everybody's different.
  • A guide to the code

    • main.py runs repeated experiments and orchestrates the whole shebang.
      • It iterates through all n_runs and acquisition strategies.
    • experiment.py handles a single experiment.
      • It combines the model, dataset, acquisition strategy, and risk estimators.
    • datasets.py, aquisition.py, loss.py, risk_estimators.py all contain exactly what you would expect!
    • hoover.py is a logging module.
    • models/ contains all models, scikit-learn and pyTorch.
      • In sk2torch.py we have some code that wraps torch models in a way that lets them be used as scikit-learn models from the outside.

And Finally

Thanks for stopping by!

If you find anything wrong with the code, please contact us.

We are happy to answer any questions related to the code and project.

Owner
Jannik Kossen
PhD Student at OATML Oxford
Jannik Kossen
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023