CVPR 2021 Challenge on Super-Resolution Space

Overview

Learning the Super-Resolution Space Challenge
NTIRE 2021 at CVPR

Learning the Super-Resolution Space challenge is held as a part of the 6th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop in conjunction with CVPR 2021. The goal of this challenge is to develop a super-resolution method that can actively sample from the space of plausible super-resolutions.

How to participate?

To participate in this challenge, please sign up using the following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Tackling the ill-posed nature of Super-Resolution

CVPR 2021 Challenge

Usually, super-resolution (SR) is trained using pairs of high- and low-resolution images. Infinitely many high-resolution images can be downsampled to the same low-resolution image. That means that the problem is ill-posed and cannot be inverted with a deterministic mapping. Instead, one can frame the SR problem as learning a stochastic mapping, capable of sampling from the space of plausible high-resolution images given a low-resolution image. This problem has been addressed in recent works [1, 2, 3]. The one-to-many stochastic formulation of the SR problem allows for a few potential advantages:

  • The development of more robust learning formulations that better accounts for the ill-posed nature of the SR problem.
  • Multiple predictions can be sampled and compared.
  • It opens the potential for controllable exploration and editing in the space of SR predictions.
Super-Resolution with Normalizing Flow Explorable SR Screenshot 2021-01-12 at 16 05 43
[Paper] [Project] [Paper] [Project] [Paper] [Project]
[1] SRFlow: Learning the Super-Resolution Space with Normalizing Flow. Lugmayr et al., ECCV 2020. [2] Explorable Super-Resolution. Bahat & Michaeli, CVPR 2020. [3] DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution. Bühler et al., ACCV 2020.

CVPR 2021 Challenge on Learning the Super-Resolution Space

We organize this challenge to stimulate research in the emerging area of learning one-to-many SR mappings that are capable of sampling from the space of plausible solutions. Therefore the task is to develop a super-resolution method that:

  1. Each individual SR prediction should achieve highest possible photo-realism, as perceived by humans.
  2. Is capable of sampling an arbitrary number of SR images capturing meaningful diversity, corresponding to the uncertainty induced by the ill-posed nature of the SR problem together with image priors.
  3. Each individual SR prediction should be consistent with the input low-resolution image.

The challenge contains two tracks, targeting 4X and 8X super-resolution respectively. You can download the training and validation data in the table below. At a later stage, the low-resolution of the test set will be released.

  Training Validation
  Low-Resolution High-Resolution Low-Resolution High-Resolution
Track 4X 4X LR Train 4X HR Train 4X LR Valid 4X HR Valid
Track 8X 8X LR Train 8X HR Train 8X LR Valid 8X HR Valid

Challenge Rules

To guide the research towards useful and generalizable techniques, submissions need to adhere to the following rules. All participants must submit code of their solution along with the final results.

  • The method must be able to generate an arbitrary number of diverse samples. That is, your method cannot be limited to a maximum number of different SR samples (corresponding to e.g. a certain number of different output network heads).
  • All SR samples must be generated by a single model. That is, no ensembles are allowed.
  • No self-ensembles during inference (e.g. flipping and rotation).
  • All SR samples must be generated using the same hyper-parameters. That is, the generated SR samples shall not be the result of different choices of hyper-parameters during inference.
  • We accept submissions of deterministic methods. However, they will naturally score zero in the diversity measure and therefore not be able to win the challenge.
  • Other than the validation and test split of the DIV2k dataset, any training data or pre-training is allowed. You are not allowed to use DIV2K validation or test sets (low- and high-resolution images) for training.

Evaluation Protocol

A method is evaluated by first predicting a set of 10 randomly sampled SR images for each low-resolution image in the dataset. From this set of images, evaluation metrics corresponding to the three criteria above will be considered. The participating methods will be ranked according to each metric. These ranks will then be combined into a final score. The three evaluation metrics are described next.

git clone --recursive https://github.com/andreas128/NTIRE21_Learning_SR_Space.git
python3 measure.py OutName path/to/Ground-Truch path/to/Super-Resolution n_samples scale_factor

# n_samples = 10
# scale_factor = 4 for 4X and 8 for 8X

How we measure Photo-realism?

To assess the photo-realism, a human study will be performed on the test set for the final submission.

Automatically assessing the photo-realism and image quality is an extremely difficult task. All existing methods have severe shortcomings. As a very rough guide, you can use the LPIPS distance. Note: LPIPS will not be used to score photo-realism of you final submission. So beware of overfitting to LPIPS, as that can lead to worse results. LPIPS is integrated in our provided toolkit in measure.py.

How we measure the spanning of the SR Space?

The samples of the developed method should provide a meaningful diversity. To measure that, we define the following score. We sample 10 images, densely calculate a metric between the samples and the ground truth. To obtain the local best we pixel-wise select the best score out of the 10 samples and take the full image's average. The global best is obtained by averaging the whole image's score and selecting the best. Finally, we calculate the score using the following formula:

score = (global best - local best)/(global best) * 100

ESRGAN SRFlow
Track 4X 0 25.36
Track 8X 0 10.62

How we measure the Low Resolution Consistency

To measure how much information is preserved in the super-resloved image from the low-resolution image, we measure the LR-PSNR. The goal in this challenge is to obtain a LR-PSNR of 45dB. All approaches that have an average PSNR above this value will be ranked equally in terms of this criteria.

ESRGAN SRFlow
Track 4X 39.01 49.91
Track 8X 31.28 50.0

Important Dates

Date Event
2021.03.01 Final test data release (inputs only)
2021.03.08 test result submission deadline
2021.03.09 fact sheet / code / model submission deadline
2021.03.11 test preliminary score release to the participants
2021.03.28 challenge paper submission deadline
2021.04.13 camera-ready deadline
2021.06.15 workshop day

Submission of Final Test Results

After the final testing phase, participants will be asked to submit:

  • SR predictions on the test set.
  • Code.
  • A fact sheet describing their method.

Details will follow when the test phase starts ...

Issues and questions

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

CVPR 2021 NTIRE Terms and conditions

The terms and conditions for participating in the challenge are provided here

How to participate?

To participate in this challenge, please sign up using following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Owner
andreas
andreas
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022