Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Overview

Gated-Attention Architectures for Task-Oriented Language Grounding

This is a PyTorch implementation of the AAAI-18 paper:

Gated-Attention Architectures for Task-Oriented Language Grounding
Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj Rajagopal, Ruslan Salakhutdinov
Carnegie Mellon University

Project Website: https://sites.google.com/view/gated-attention

example

This repository contains:

  • Code for training an A3C-LSTM agent using Gated-Attention
  • Code for Doom-based language grounding environment

Dependencies

(We recommend using Anaconda)

Usage

Using the Environment

For running a random agent:

python env_test.py

To play in the environment:

python env_test.py --interactive 1

To change the difficulty of the environment (easy/medium/hard):

python env_test.py -d easy

Training Gated-Attention A3C-LSTM agent

For training a A3C-LSTM agent with 32 threads:

python a3c_main.py --num-processes 32 --evaluate 0

The code will save the best model at ./saved/model_best.

To the test the pre-trained model for Multitask Generalization:

python a3c_main.py --evaluate 1 --load saved/pretrained_model

To the test the pre-trained model for Zero-shot Task Generalization:

python a3c_main.py --evaluate 2 --load saved/pretrained_model

To the visualize the model while testing add '--visualize 1':

python a3c_main.py --evaluate 2 --load saved/pretrained_model --visualize 1

To test the trained model, use --load saved/model_best in the above commands.

All arguments for a3c_main.py:

  -h, --help            show this help message and exit
  -l MAX_EPISODE_LENGTH, --max-episode-length MAX_EPISODE_LENGTH
                        maximum length of an episode (default: 30)
  -d DIFFICULTY, --difficulty DIFFICULTY
                        Difficulty of the environment, "easy", "medium" or
                        "hard" (default: hard)
  --living-reward LIVING_REWARD
                        Default reward at each time step (default: 0, change
                        to -0.005 to encourage shorter paths)
  --frame-width FRAME_WIDTH
                        Frame width (default: 300)
  --frame-height FRAME_HEIGHT
                        Frame height (default: 168)
  -v VISUALIZE, --visualize VISUALIZE
                        Visualize the envrionment (default: 0, use 0 for
                        faster training)
  --sleep SLEEP         Sleep between frames for better visualization
                        (default: 0)
  --scenario-path SCENARIO_PATH
                        Doom scenario file to load (default: maps/room.wad)
  --interactive INTERACTIVE
                        Interactive mode enables human to play (default: 0)
  --all-instr-file ALL_INSTR_FILE
                        All instructions file (default:
                        data/instructions_all.json)
  --train-instr-file TRAIN_INSTR_FILE
                        Train instructions file (default:
                        data/instructions_train.json)
  --test-instr-file TEST_INSTR_FILE
                        Test instructions file (default:
                        data/instructions_test.json)
  --object-size-file OBJECT_SIZE_FILE
                        Object size file (default: data/object_sizes.txt)
  --lr LR               learning rate (default: 0.001)
  --gamma G             discount factor for rewards (default: 0.99)
  --tau T               parameter for GAE (default: 1.00)
  --seed S              random seed (default: 1)
  -n N, --num-processes N
                        how many training processes to use (default: 4)
  --num-steps NS        number of forward steps in A3C (default: 20)
  --load LOAD           model path to load, 0 to not reload (default: 0)
  -e EVALUATE, --evaluate EVALUATE
                        0:Train, 1:Evaluate MultiTask Generalization
                        2:Evaluate Zero-shot Generalization (default: 0)
  --dump-location DUMP_LOCATION
                        path to dump models and log (default: ./saved/)

Demostration videos:

Multitask Generalization video: https://www.youtube.com/watch?v=YJG8fwkv7gA

Zero-shot Task Generalization video: https://www.youtube.com/watch?v=JziCKsLrudE

Different stages of training: https://www.youtube.com/watch?v=o_G6was03N0

Cite as

Chaplot, D.S., Sathyendra, K.M., Pasumarthi, R.K., Rajagopal, D. and Salakhutdinov, R., 2017. Gated-Attention Architectures for Task-Oriented Language Grounding. arXiv preprint arXiv:1706.07230. (PDF)

Bibtex:

@article{chaplot2017gated,
  title={Gated-Attention Architectures for Task-Oriented Language Grounding},
  author={Chaplot, Devendra Singh and Sathyendra, Kanthashree Mysore and Pasumarthi, Rama Kumar and Rajagopal, Dheeraj and Salakhutdinov, Ruslan},
  journal={arXiv preprint arXiv:1706.07230},
  year={2017}
}

Acknowledgements

This repository uses ViZDoom API (https://github.com/mwydmuch/ViZDoom) and parts of the code from the API. The implementation of A3C is borrowed from https://github.com/ikostrikov/pytorch-a3c. The poisson-disc code is borrowed from https://github.com/IHautaI/poisson-disc.

Owner
Devendra Chaplot
Ph.D. student in Machine Learning Dept., School of Computer Science, CMU.
Devendra Chaplot
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022