This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Overview

Bridge-damage-segmentation

This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection submitted to the IC-SHM Challenge 2021. The semantic segmentation framework used in this paper leverages importance sampling, semantic mask, and multi-scale test time augmentation to achieve a 0.836 IoU for scene component segmentation and a 0.467 IoU for concrete damage segmentation on the Tokaido Dataset. The framework was implemented on MMSegmentation using Python.

Highlights

Models used in the framework

Backbones

  • HRNet
  • Swin
  • ResNest

Decoder Heads

  • PSPNet
  • UperNet
  • OCRNet

Performance

The following table reports IoUs for structural component segmentation.

Architecture Slab Beam Column Non-structural Rail Sleeper Average
Ensemble 0.891 0.880 0.859 0.660 0.623 0.701 0.785
Ensemble + Importance sampling 0.915 0.912 0.958 0.669 0.618 0.892 0.827
Ensemble + Importance sampling + Multi-scale TTA 0.924 0.929 0.965 0.681 0.621 0.894 0.836

The following table reports IoUs for damage segmentation of pure texture images.

Architecture Concrete damage Exposed rebar Average
Ensemble 0.356 0.536 0.446
Ensemble + Importance sampling 0.708 0.714 0.711
Ensemble + Importance sampling + Multi-scale TTA 0.698 0.727 0.712

The following table reports IoUs for damage segmentation of real scene images.

Architecture Concrete damage Exposed rebar Average
Ensemble 0.235 0.365 0.300
Ensemble + Importance sampling 0.340 0.557 0.448
Ensemble + Importance sampling + Multi-scale TTA 0.350 0.583 0.467
Ensemble + Importance sampling + Multi-scale TTA + Mask 0.379 0.587 0.483

Environment

The code is developed under the following configurations.

  • Hardware: >= 2 GPUs for training, >= 1 GPU for testing. The script supports sbatch training and testing on computer clusters.
  • Software:
    • System: Ubuntu 16.04.3 LTS
    • CUDA >= 10.1
  • Dependencies:

Usage

Environment

  1. Install conda and create a conda environment

    $ conda create -n open-mmlab
    $ source activate open-mmlab
    $ conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch
  2. Install mmcv-full

    $ pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html
  3. Install mmsegmentation

    $ pip install git+https://github.com/open-mmlab/mmsegmentation.git
  4. Install other dependencies

    $ pip install opencv, tqdm, numpy, scipy
  5. Download the Tokaido dataset from IC-SHM Challenge 2021.

Training

  1. Example single model training using multiple GPUs
    $ python3 -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --master_port=$RANDOM ./apis/train_damage_real.py \
      --nw hrnet \
      --cp $CHECKPOINT_DIR \
      --dr $DATA_ROOT \
      --conf $MODEL_CONFIG \
      --bs 16 \
      --train_split $TRAIN_SPLIT_PATH \
      --val_split $VAL_SPLIT_PATH \
      --width 1920 \
      --height 1080 \
      --distributed \
      --iter 100000 \
      --log_iter 10000 \
      --eval_iter 10000 \
      --checkpoint_iter 10000 \
      --multi_loss \
      --ohem \
      --job_name dmg
  2. Example shell script for preparing the whole dataset and train all models for the whole pipeline.
    $ ./scripts/main_training_script.sh

Evlauation

  1. Eval one model

    $ python3 ./test/test.py \
      --nw hrnet \
      --task single \
      --cp $CONFIG_PATH \
      --dr $DATA_ROOT \
      --split_csv $RAW_CSV_PATH \
      --save_path $OUTPOUT_DIR \
      --img_dir $INPUT_IMG_DIR \
      --ann_dir $INPUT_GT_DIR \
      --split $TEST_SPLIT_PATH \
      --type cmp \
      --width 640 \
      --height 360
  2. Example shell script for testing the whole pipeline and generate the output using the IC-SHM Challenge format.

    $ ./scripts/main_testing_script.sh
  3. Visualization (Add the --cmp flag when visualizing components.)

    $ ./modules/viz_label.py \
      --input $SEG_DIR
      --output $OUTPUT_DIR
      --raw_input $IMG_DIR
      --cmp 

Reference

If you find the code useful, please cite the following paper.

Owner
Jingxiao Liu
PhD Candidate at Stanford University
Jingxiao Liu
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022