Probabilistic Gradient Boosting Machines

Related tags

Deep Learningpgbm
Overview

PGBM Airlab Amsterdam

PyPi version Python version GitHub license

Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:

  • Probabilistic regression estimates instead of only point estimates. (example)
  • Auto-differentiation of custom loss functions. (example, example)
  • Native (multi-)GPU-acceleration. (example, example)
  • Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. (example)

It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting. For more details, read our paper or check out the examples.

Installation

Run pip install pgbm from a terminal within a Python (virtual) environment of your choice.

Verification

  • Download & run an example from the examples folder to verify the installation is correct:
    • Run this example to verify ability to train & predict on CPU with Torch backend.
    • Run this example to verify ability to train & predict on GPU with Torch backend.
    • Run this example to verify ability to train & predict on CPU with Numba backend.
  • Note that when training on the GPU, the custom CUDA kernel will be JIT-compiled when initializing a model. Hence, the first time you train a model on the GPU it can take a bit longer, as PGBM needs to compile the CUDA kernel.
  • When using the Numba-backend, several functions need to be JIT-compiled. Hence, the first time you train a model using this backend it can take a bit longer.
  • To run the examples some additional packages such as scikit-learn or matplotlib are required; these should be installed separately via pip or conda.

Dependencies

The core package has the following dependencies which should be installed separately (installing the core package via pip will not automatically install these dependencies).

Torch backend
  • CUDA Toolkit matching your PyTorch distribution (https://developer.nvidia.com/cuda-toolkit)
  • PyTorch >= 1.7.0, with CUDA 11.0 for GPU acceleration (https://pytorch.org/get-started/locally/). Verify that PyTorch can find a cuda device on your machine by checking whether torch.cuda.is_available() returns True after installing PyTorch.
  • PGBM uses a custom CUDA kernel which needs to be compiled, which may require installing a suitable compiler. Installing PyTorch and the full CUDA Toolkit should be sufficient, but open an issue if you find it still not working even after installing these dependencies.
Numba backend

The Numba backend does not support differentiable loss functions and GPU training is also not supported using this backend.

Support

See the examples folder for examples, an overview of hyperparameters and a function reference. In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement), except that it is required to explicitly define a loss function and loss metric.

In case further support is required, open an issue.

Reference

Olivier Sprangers, Sebastian Schelter, Maarten de Rijke. Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 21), August 14–18, 2021, Virtual Event, Singapore.

The experiments from our paper can be replicated by running the scripts in the experiments folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the datasets folder (Higgs) and to datasets/m5 (m5).

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Owner
Olivier Sprangers
PhD student at University of Amsterdam
Olivier Sprangers
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022