Probabilistic Gradient Boosting Machines

Related tags

Deep Learningpgbm
Overview

PGBM Airlab Amsterdam

PyPi version Python version GitHub license

Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:

  • Probabilistic regression estimates instead of only point estimates. (example)
  • Auto-differentiation of custom loss functions. (example, example)
  • Native (multi-)GPU-acceleration. (example, example)
  • Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. (example)

It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting. For more details, read our paper or check out the examples.

Installation

Run pip install pgbm from a terminal within a Python (virtual) environment of your choice.

Verification

  • Download & run an example from the examples folder to verify the installation is correct:
    • Run this example to verify ability to train & predict on CPU with Torch backend.
    • Run this example to verify ability to train & predict on GPU with Torch backend.
    • Run this example to verify ability to train & predict on CPU with Numba backend.
  • Note that when training on the GPU, the custom CUDA kernel will be JIT-compiled when initializing a model. Hence, the first time you train a model on the GPU it can take a bit longer, as PGBM needs to compile the CUDA kernel.
  • When using the Numba-backend, several functions need to be JIT-compiled. Hence, the first time you train a model using this backend it can take a bit longer.
  • To run the examples some additional packages such as scikit-learn or matplotlib are required; these should be installed separately via pip or conda.

Dependencies

The core package has the following dependencies which should be installed separately (installing the core package via pip will not automatically install these dependencies).

Torch backend
  • CUDA Toolkit matching your PyTorch distribution (https://developer.nvidia.com/cuda-toolkit)
  • PyTorch >= 1.7.0, with CUDA 11.0 for GPU acceleration (https://pytorch.org/get-started/locally/). Verify that PyTorch can find a cuda device on your machine by checking whether torch.cuda.is_available() returns True after installing PyTorch.
  • PGBM uses a custom CUDA kernel which needs to be compiled, which may require installing a suitable compiler. Installing PyTorch and the full CUDA Toolkit should be sufficient, but open an issue if you find it still not working even after installing these dependencies.
Numba backend

The Numba backend does not support differentiable loss functions and GPU training is also not supported using this backend.

Support

See the examples folder for examples, an overview of hyperparameters and a function reference. In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement), except that it is required to explicitly define a loss function and loss metric.

In case further support is required, open an issue.

Reference

Olivier Sprangers, Sebastian Schelter, Maarten de Rijke. Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 21), August 14–18, 2021, Virtual Event, Singapore.

The experiments from our paper can be replicated by running the scripts in the experiments folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the datasets folder (Higgs) and to datasets/m5 (m5).

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Owner
Olivier Sprangers
PhD student at University of Amsterdam
Olivier Sprangers
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022