Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

Related tags

Deep Learningcogail
Overview

CoGAIL

Table of Content

Overview

This repository is the implementation code of the paper "Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration"(arXiv, Project, Video) by Wang et al. at Stanford Vision and Learning Lab. In this repo, we provide our full implementation code of training and evaluation.

Installation

  • python 3.6+
conda create -n cogail python=3.6
conda activate cogail
  • iGibson 1.0 variant version for co-gail. For more details of iGibson installation please refer to Link
git clone https://github.com/j96w/iGibson.git --recursive
cd iGibson
git checkout cogail
python -m pip install -e .

Please also download the assets of iGibson (models of the objects, 3D scenes, etc.) follow the instruction. The data should be located at your_installation_path/igibson/data/. After downloaded the dataset, copy the modified robot and humanoid mesh file to this location as follows

cd urdfs
cp fetch.urdf your_installation_path/igibson/data/assets/models/fetch/.
cp camera.urdf your_installation_path/igibson/data/assets/models/grippers/basic_gripper/.
cp -r humanoid_hri your_installation_path/igibson/data/assets/models/.
  • other requirements
cd cogail
python -m pip install -r requirements.txt

Dataset

You can download the collected human-human collaboration demonstrations for Link. The demos for cogail_exp1_2dfq is collected by a pair of joysticks on an xbox controller. The demos for cogail_exp2_handover and cogail_exp3_seqmanip are collected with two phones on the teleoperation system RoboTurk. After downloaded the file, simply unzip them at cogail/ as follows

unzip dataset.zip
mv dataset your_installation_path/cogail/dataset

Training

There are three environments (cogail_exp1_2dfq, cogail_exp2_handover, cogail_exp3_seqmanip) implemented in this work. Please specify the choice of environment with --env-name

python scripts/train.py --env-name [cogail_exp1_2dfq / cogail_exp2_handover / cogail_exp3_seqmanip]

Evaluation

Evaluation on unseen human demos (replay evaluation):

python scripts/eval_replay.py --env-name [cogail_exp1_2dfq / cogail_exp2_handover / cogail_exp3_seqmanip]

Trained Checkpoints

You can download the trained checkpoints for all three environments from Link.

Acknowledgement

The cogail_exp1_2dfq is implemented with Pygame. The cogail_exp2_handover and cogail_exp3_seqmanip are implemented in iGibson v1.0.

The demos for robot manipulation in iGibson is collected with RoboTurk.

Code is based on the PyTorch GAIL implementation by ikostrikov (https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.git).

Citations

Please cite Co-GAIL if you use this repository in your publications:

@article{wang2021co,
  title={Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration},
  author={Wang, Chen and P{\'e}rez-D'Arpino, Claudia and Xu, Danfei and Fei-Fei, Li and Liu, C Karen and Savarese, Silvio},
  journal={arXiv preprint arXiv:2108.06038},
  year={2021}
}

License

Licensed under the MIT License

Owner
Jeremy Wang
Ph.D. student, Stanford
Jeremy Wang
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022