Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

Overview

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation

This is a PyTorch and LibTorch implementation of MarkerPose: a robust, real-time pose estimation method based on a planar marker of three circles and a calibrated stereo vision system for high-accuracy pose estimation.

MarkerPose

MarkerPose method consists of three stages. In the first stage, marker points in a pixel-level accuracy, and their IDs are estimated with a SuperPoint-like network for both views. In the second stage, three square patches that contain each ellipse of the target are extracted centered in the rough 2D locations previously estimated. With EllipSegNet the contour of the ellipses is segmented for sub-pixel-level centroid estimation for the first and second view. Finally, in the last stage, with the sub-pixel matches of both views, triangulation is applied for 3D pose estimation. For more details see our paper.

robot_arms

Pose estimation example

To run the Python or C++ pose estimation examples, you need first to clone this repository and download the dataset. This dataset contains the stereo calibration parameters, stereo images, and pretrained weights for SuperPoint and EllipSegNet.

  • Clone this repo: git clone https://github.com/jhacsonmeza/MarkerPose
  • Download the dataset here.
  • Move the dataset/ folder to the cloned repo folder: mv path/to/dataset/ MarkerPose/.

The folder structure into MarkerPose/ directory should be:

MarkerPose
    ├── C++
    ├── dataset
    ├── figures
    └── Python

To know how to run the pose estimation examples, see the Python/ folder for the PyTorch version, and the C++/ folder the LibTorch version. Furthermore, the code for training SuperPoint and EllipSegNet is also available in both versions.

Citation

If you find this code useful, please consider citing:

@inproceedings{meza2021markerpose,
  title={MarkerPose: Robust Real-time Planar Target Tracking for Accurate Stereo Pose Estimation},
  author={Meza, Jhacson and Romero, Lenny A and Marrugo, Andres G},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}
Owner
Jhacson Meza
Computer vision and 3D reconstruction enthusiast. Master student. Mechatronic engineer.
Jhacson Meza
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022