Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

Overview

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation

This is a PyTorch and LibTorch implementation of MarkerPose: a robust, real-time pose estimation method based on a planar marker of three circles and a calibrated stereo vision system for high-accuracy pose estimation.

MarkerPose

MarkerPose method consists of three stages. In the first stage, marker points in a pixel-level accuracy, and their IDs are estimated with a SuperPoint-like network for both views. In the second stage, three square patches that contain each ellipse of the target are extracted centered in the rough 2D locations previously estimated. With EllipSegNet the contour of the ellipses is segmented for sub-pixel-level centroid estimation for the first and second view. Finally, in the last stage, with the sub-pixel matches of both views, triangulation is applied for 3D pose estimation. For more details see our paper.

robot_arms

Pose estimation example

To run the Python or C++ pose estimation examples, you need first to clone this repository and download the dataset. This dataset contains the stereo calibration parameters, stereo images, and pretrained weights for SuperPoint and EllipSegNet.

  • Clone this repo: git clone https://github.com/jhacsonmeza/MarkerPose
  • Download the dataset here.
  • Move the dataset/ folder to the cloned repo folder: mv path/to/dataset/ MarkerPose/.

The folder structure into MarkerPose/ directory should be:

MarkerPose
    ├── C++
    ├── dataset
    ├── figures
    └── Python

To know how to run the pose estimation examples, see the Python/ folder for the PyTorch version, and the C++/ folder the LibTorch version. Furthermore, the code for training SuperPoint and EllipSegNet is also available in both versions.

Citation

If you find this code useful, please consider citing:

@inproceedings{meza2021markerpose,
  title={MarkerPose: Robust Real-time Planar Target Tracking for Accurate Stereo Pose Estimation},
  author={Meza, Jhacson and Romero, Lenny A and Marrugo, Andres G},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}
Owner
Jhacson Meza
Computer vision and 3D reconstruction enthusiast. Master student. Mechatronic engineer.
Jhacson Meza
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022