Alleviating Over-segmentation Errors by Detecting Action Boundaries

Overview

Alleviating Over-segmentation Errors by Detecting Action Boundaries

Forked from ASRF offical code. This repo is the a implementation of replacing original MSTCN backbone with ASFormer.

Dataset

GTEA, 50Salads, Breakfast

You can download features and G.T. of these datasets from this repository.
Or you can extract their features by yourself using this repository

Requirements

  • Python >= 3.7
  • pytorch => 1.0
  • torchvision
  • pandas
  • numpy
  • Pillow
  • PyYAML

You can download packages using requirements.txt.

pip install -r requirements.txt

Directory Structure

root ── csv/
      ├─ libs/
      ├─ imgs/
      ├─ result/
      ├─ utils/
      ├─ dataset ─── 50salads/...
      │           ├─ breakfast/...
      │           └─ gtea ─── features/
      │                    ├─ groundTruth/
      │                    ├─ splits/
      │                    └─ mapping.txt
      ├.gitignore
      ├ README.md
      ├ requirements.txt
      ├ save_pred.py
      ├ train.py
      └ evaluate.py
  • csv directory contains csv files which are necessary for training and testing.
  • An image in imgs is one from PascalVOC. This is used for an color palette to visualize outputs.
  • Experimental results are stored in results directory.
  • Scripts in utils are directly irrelevant with train.py and evaluate.py but necessary for converting labels, generating configurations, visualization and so on.
  • Scripts in libs are necessary for training and evaluation. e.g.) models, loss functions, dataset class and so on.
  • The datasets downloaded from this repository are stored in dataset. You can put them in another directory, but need to specify the path in configuration files.
  • train.py is a script for training networks.
  • eval.py is a script for evaluation.
  • save_pred.py is for saving predictions from models.

How to use

Please also check scripts/experiment.sh, which runs all the following experimental codes.

  1. First of all, please download features and G.T. of these datasets from this repository.

  2. Features and groundTruth labels need to be converted to numpy array. This repository does not provide boundary groundtruth labels, so you have to generate them, too. Please run the following command. [DATASET_DIR] is the path to your dataset directory.

    python utils/generate_gt_array.py --dataset_dir [DATASET_DIR]
    python utils/generate_boundary_array.py --dataset_dir [DATASET_DIR]
  3. In this implementation, csv files are used for keeping information of training or test data. You can run the below command to generate csv files, but we suggest to use the csv files provided in the repo.

    python utils/make_csv_files.py --dataset_dir [DATASET_DIR]
  4. You can automatically generate experiment configuration files by running the following command. This command generates directories and configuration files in root_dir. However, we suggest to use the config files provided in the repo.

    python utils/make_config.py --root_dir ./result/50salads --dataset 50salads --split 1 2 3 4 5
    python utils/make_config.py --root_dir ./result/gtea --dataset gtea --split 1 2 3 4
    python utils/make_config.py --root_dir ./result/breakfast --dataset breakfast --split 1 2 3 4

    If you want to add other configurations, please add command-line options like:

    python utils/make_config.py --root_dir ./result/50salads --dataset 50salads --split 1 2 3 4 5 --learning_rate 0.1 0.01 0.001 0.0001

    Please see libs/config.py about configurations.

  5. You can train and evaluate models specifying a configuration file generated in the above process like, we train 80 epochs for 50salads dataset in the config.yaml.

    python train.py ./result/50salads/dataset-50salads_split-1/config.yaml
    python evaluate.py ./result/50salads/dataset-50salads_split-1/config.yaml test
  6. You can also save model predictions as numpy array by running:

    python save_pred.py ./result/50salads/dataset-50salads_split-1/config.yaml test
  7. If you want to visualize the saved model predictions, please run:

    python utils/convert_arr2img.py ./result/50salads/dataset-50salads_split1/predictions

License

This repository is released under the MIT License.

Citation

@inproceedings{chinayi_ASformer,
author={Fangqiu Yi and Hongyu Wen and Tingting Jiang}, booktitle={The British Machine Vision Conference (BMVC)},
title={ASFormer: Transformer for Action Segmentation}, year={2021},
}

Reference

  • Yuchi Ishikawa, Seito Kasai, Yoshimitsu Aoki, Hirokatsu Kataoka, "Alleviating Over-segmentation Errors by Detecting Action Boundaries" in WACV 2021.
  • Colin Lea et al., "Temporal Convolutional Networks for Action Segmentation and Detection", in CVPR2017 (paper)
  • Yazan Abu Farha et al., "MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation", in CVPR2019 (paper, code)
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
3 Apr 20, 2022