Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Overview

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Reference

 Abeßer, J. & Müller, M. Towards Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning, submitted to: ICASSP 2022

Related Work

  • we use pre-computed features & model architecture used in 3 previous papers
    • these are all unsupervised domain adaptation methods
    Mezza, A. I., Habets, E. A. P., Müller, M., & Sarti, A. (2021).
    #Unsupervised domain adaptation for acoustic scene classification
    using band-wise statistics matching. Proceedings of the European
    Signal Processing Conference (EUSIPCO), 11–15.
    https://doi.org/10.23919/Eusipco47968.2020.9287533"

    Drossos, K., Magron, P., & Virtanen, T. (2019). Unsupervised Adversarial Domain Adaptation based
    on the Wasserstein Distance for Acoustic Scene Classification. Proceedings of the IEEE Workshop
    on Applications of Signal Processing to Audio and Acoustics (WASPAA), 259–263. New Paltz, NY, USA.

    Gharib, S., Drossos, K., Emre, C., Serdyuk, D., & Virtanen, T. (2018). Unsupervised Adversarial Domain
    Adaptation for Acoustic Scene Classification. Proceedings of the Detection and Classification of
    Acoustic Scenes and Events (DCASE). Surrey, UK.

Files

  • configs.py - Training configurations (C0 ... C3M)
  • generator.py - Data generator
  • losses.py - Loss implementations
  • model.py - Function to create dual-input / dual-output model
  • model_kaggle.py - reference CNN model from related work for acoustic scene classification (ASC)
  • normalization.py - Normalization methods (see Mezza et al. above)
  • params.py - General parameters
  • prediction.py - Prediction script to evaluate models on test data
  • training.py - Script to run the model training for 6 different configurations (see Fig. 2 in the paper)

How to run

  • create python environment (e.g. with conda), the following versions were used during the paper preparation process
    • librosa==0.8.0
    • matplotlib==3.3.2
    • numpy=1.19.2
    • python=3.7.0
    • scikit-learn==0.23.2
    • tensorflow==2.3.0
    • torch==1.9.0
  • set in params.py the following variables
  • run python training.py && python prediction.py on a GPU device to train & evaluate the models
Owner
Jakob Abeßer
Passionate bass guitar player and percussionist. Senior Scientist at Fraunhofer IDMT. PhD in Music Information Retrieval.
Jakob Abeßer
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022