Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Related tags

Deep LearningVG-Bert
Overview

Visually Grounded Bert Language Model

This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning.

To cite this work: Zhang, Y., Choi, M., Han, K., & Liu, Z. Explainable Semantic Space by Grounding Language toVision with Cross-Modal Contrastive Learning. (accepted by Neurips 2021).

Abstract

In natural language processing, most models try to learn semantic representa- tions merely from texts. The learned representations encode the “distributional semantics” but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes “grounded semantics” for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the model’s language stream is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowl- edge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations.

Requirements

The model was trained with Python version: 3.7.4.

numpy==1.17.2, scipy==1.3.1, torch==1.7.1, torchvision==0.8.2, transformers==4.2.1, Pillow==6.2.0, tokenizers==0.9.4

Training

To train the model(s) in the paper, run the following commands:

stage-1: visual stream pretraining:

python visual_stream_pretraining.py \
-a vgg16_attention \
--pretrained \
--batch-size 200 \
--use-position learn \
--lr 0.01 \
/directory-to-ImageNet-dataset/ImageNet2012/

stage-2: two-stream grounding on MS COCO dataset with corss-modal contrastive loss:

python run.py \
--stage two_stream_pretraining \
--data-train /directory-to-COCO-dataset/COCO_train2017.json \
--data-val /directory-to-COCO-dataset/COCO_val2017.json \
--optim adam \
--learning-rate 5e-5 \
--batch-size 180 \
--n_epochs 100 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position learn \
--language-model Bert_base \
--embedding-dim 768 \
--sigma 0.1 \
--dropout-rate 0.3 \
--base-model-learnable-layers 8 \
--load-pretrained /directory-to-pretrain-image-model/ \
--exp-dir /output-directory/two-stream-pretraining/

stage-3: visual relational grounding on Visual Genome dataset:

python run.py \
--stage relational_grounding \
--data-train /directory-to-Visual-Genome-dataset/VG_train_dataset_finalized.json \
--data-val /directory-to-Visual-Genome-dataset/VG_val_dataset_finalized.json \
--optim adam \
--learning-rate 1e-5 \
--batch-size 180 \
--n_epochs 150 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position learn \
--language-model Bert_object \
--num-heads 8 \
--embedding-dim 768 \
--subspace-dim 32 \
--relation-num 115 \
--temperature 1 \
--dropout-rate 0.1 \
--base-model-learnable-layers 2 \
--load-pretrained /directory-to-pretrain-two-stream-model/ \
--exp-dir /output-directory/relational-grounding/

Transfer learning for cross-modal image search:

python transfer_cross_modal_retrieval.py \
--data-train /directory-to-COCO-dataset/COCO_train2017.json \
--data-val /directory-to-COCO-dataset/COCO_val2017.json \
--optim adam \
--learning-rate 5e-5 \
--batch-size 300 \
--n_epochs 150 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position absolute_learn \
--language-model Bert_object \
--num-heads 8 \
--embedding-dim 768 \
--subspace-dim 32 \
--relation-num 115 \
--sigma 0.1 \
--dropout-rate 0.1 \
--load-pretrained /directory-to-pretrain-two-stream-model/ \
--exp-dir /output-directory/cross-modal-retrieval/

Evaluation

We include the jupyter notebook scripts for running evaluation tasks in our paper. See README in evaluation/.

A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022