aMLP Transformer Model for Japanese

Overview

aMLP-japanese

Japanese aMLP Pretrained Model

aMLPとは、Liu, Daiらが提案する、Transformerモデルです。

ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。

詳しい解説は、こちらの記事などを参考にしてください。

このプロジェクトは、スポンサーを募集しています

aMLP 日本語モデル

New

  • 2021/11/13 - 事前学習済みbaseモデルおよびSQuADモデルを公開しました

aMLP (Pay Attention to MLPs) とは

gMLPは、Liu, Daiらが、論文「Pay Attention to MLPs」で提案した、Self-Attention機構を排除したTransformerモデルです

BERTのTransformerモデルよりも、1層あたりのパラメーター数が少なく、その代わりに多数の層を重ねることで、同じパラメーター数あたりの性能で見て、BERTを超える性能を発揮します

ざっくりと「BERTと同じように使えてBERTより性能の良いモデル」と捉えて良いでしょう

aMLPは、gMLPにさらにSoft-Attention機構を追加することで、SQuAD等質疑応答タスクにおいてもBERTを超える性能を発揮すると報告されているモデルです

aMLP-japaneseとは、Tensorflow2で実装したaMLPモデルに、40GB超の日本語コーパスを事前学習させた、学習済みモデルです

日本語のエンコードにはJapanese-BPEEncoder_V2を使用し、トークン数は24Kです

TODO

✓baseモデルの公開(2021/11/13)
✓SQuADモデルの公開(2021/11/13)

公開モデル

  • 事前学習モデル
モデル名 ダウンロードURL パラメーター数 学習データサイズ
aMLP-base-ja https://nama.ne.jp/models/aMLP-base-ja.tar.bz2予備URL 67,923,648 40GB~
  • 質疑応答モデル
モデル名 ダウンロードURL パラメーター数 学習データサイズ
aMLP-SQuAD-base-ja https://nama.ne.jp/models/aMLP-SQuAD-base-ja.bz2予備URL 67,924,674 200K文章

質疑応答モデル

使い方

GitHubからコードをクローンします

$ git https://github.com/tanreinama/aMLP-japanese
$ cd aMLP-japanese

学習済みモデルファイルをダウンロードして展開します

$ wget https://www.nama.ne.jp/models/aMLP-SQuAD-base-ja.tar.bz2
$ tar xvfj aMLP-SQuAD-base-ja.tar.bz2

以下のように「run-squad.py」を実行します

学習済みモデルを「--restore_from」に、SQuAD形式のJSONファイルを「--pred_dataset」で指定すると、質問文に対する回答が表示されます

全ての解答の候補は、「squad-predicted.json」という名前で保存されます

$ python run-squad.py --restore_from aMLP-SQuAD-base-ja --pred_dataset squad-testdata.json
Question        Answer
ロッキード・マーティン社とボーイング社が共同開発したステルス戦闘機は?  F-22戦闘機
F-22戦闘機の愛称は?    猛禽類の意味のラプター
F-22戦闘機一機あたりの価格は?  1億5千万ドル
F-22戦闘機の航続距離は?        3200km
F-22戦闘機の巡航速度は?        マッハ1.82
F-22の生産数が削減された理由は?        調達コスト

SQuAD型の質疑応答モデルなので、JSONファイルにコンテキストが含まれている必要があります

ファインチューニング

ファインチューニング用の質疑応答データセットを用意して、SQuAD形式のJSONファイルで保存しておきます

そして、以下のように「run-squad.py」を実行します

学習済みモデルを「--restore_from」に、SQuAD形式のJSONファイルを「--dataset」で指定します

評価用のデータセットがあるときは、「--val_dataset」で指定すると、学習の途中で評価スコアが表示されます

$ python run-squad.py --restore_from aMLP-SQuAD-base-ja --dataset squad-testdata.json

一から学習させる場合は、事前学習済みモデルを「--base_model」に指定します

学習済みモデルは、「checkpoint」以下の、「--run_name」で指定したディレクトリ内に保存されます

なお、公開モデルの学習に使用した質疑応答データセットについては、著作権の関係から公開出来ません

クラス分類モデル

準備

GitHubからコードをクローンします

$ git https://github.com/tanreinama/aMLP-japanese
$ cd aMLP-japanese

事前学習済みモデルファイルをダウンロードして展開します

$ wget https://www.nama.ne.jp/models/aMLP-base-ja.tar.bz2
$ tar xvfj aMLP-base-ja.tar.bz2

学習

クラス分類タスクでは、

dir/<classA>/textA.txt
dir/<classA>/textB.txt
dir/<classB>/textC.txt
・・・

のように、「クラス名/ファイル」という形でテキストファイルが保存されている前提で、テキストファイルをクラス毎に分類するモデルを学習します

ここでは、livedoor ニュースコーパスを使用する例をサンプルとして提示します

まず、コーパスをダウンロードして展開すると、「text」以下に記事の入っているディレクトリが作成されます

$ wget https://www.rondhuit.com/download/ldcc-20140209.tar.gz
$ tar xvfz ldcc-20140209.tar.gz
$ ls text/

学習には、以下のように「run-classifier.py」を実行します

事前学習済みモデルを「--base_model」に、データセットのディレクトリを「--dataset」で指定します

評価用のデータセットがあるときは、「--val_dataset」で指定すると、学習の途中で評価スコアが表示されます

$ python run-classifier.py --dataset text --model aMLP-base-ja --clean_text

以下のようにサブディレクトリ名とクラスIDとの対応が表示された後、学習が進みます

Loading dataset...
livedoor-homme mapped index#0
kaden-channel mapped index#1
movie-enter mapped index#2
it-life-hack mapped index#3
topic-news mapped index#4
sports-watch mapped index#5
dokujo-tsushin mapped index#6
peachy mapped index#7
smax mapped index#8

学習済みモデルは、「checkpoint」以下の、「--run_name」で指定したディレクトリ内に保存されます

推論

推論には、以下のように「run-classifier.py」を実行します

学習済みモデルを「--restore_from」に、データセットのディレクトリを「--pred_dataset」、出力ファイルを「--output」で指定します

$ python run-classifier.py --pred_dataset text --output classifier-pred.csv --restore_from checkpoint/aMLP-classifier-ja/checkpoint-XXXX
$ head -n5 classifier-pred.csv
filename,pred,true
text/livedoor-homme/livedoor-homme-4956491.txt,livedoor-homme,livedoor-homme
text/livedoor-homme/livedoor-homme-5492081.txt,livedoor-homme,livedoor-homme
text/livedoor-homme/livedoor-homme-5818455.txt,livedoor-homme,livedoor-homme
text/livedoor-homme/livedoor-homme-6052744.txt,livedoor-homme,livedoor-homme

実行結果はCSVファイルで保存されます

テキストの穴埋め

Masked Language Modelとして実行します。aMLPのモデルは入力されたテキスト内の「[MASK]」部分を予測します

「run-mlm.py」で、直接穴埋め問題を解かせることが出来ます

「[MASK]」一つでエンコード後のBPE一つなので、「[MASK]」が日本語1文字から3文字になります

$ python run-mlm.py --context "俺の名前は坂本[MASK]。何処にでもいるサラリー[MASK]だ。" --model aMLP-base-ja
俺の名前は坂本だ。何処にでもいるサラリーマンだ。

文章のベクトル化

[CLS]トークンに対応するベクトル表現を得ます。「--output」を指定するとファイルにカンマ区切りのテキストでファイルに保存します

$ python run-vectrize.py --context "こんにちは、世界。" --model aMLP-base-ja
[1.777146577835083, 0.5332596898078918, 0.07858406007289886, 0.5532811880111694, 0.8075544238090515, 1.3260560035705566, 0.6111544370651245, 2.338435173034668, 1.0313552618026733, ・・・

REFERENCE

Hanxiao Liu, Zihang Dai, David R. So, Quoc V. Le "Pay Attention to MLPs" arXiv:2105.08050, 17 May 2021

Owner
tanreinama
日本語を扱うAIプロダクトを開発したいという企業様へ、お手伝いできるのでご連絡お待ちします。プロダクト企画を作成して開発チームを立ち上げるところから①からコミット出来ます。
tanreinama
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.

BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios

Ansh Gupta 0 May 06, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022