Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

Overview

VL-BERT

By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai.

This repository is an official implementation of the paper VL-BERT: Pre-training of Generic Visual-Linguistic Representations.

Update on 2020/01/16 Add code of visualization.

Update on 2019/12/20 Our VL-BERT got accepted by ICLR 2020.

Introduction

VL-BERT is a simple yet powerful pre-trainable generic representation for visual-linguistic tasks. It is pre-trained on the massive-scale caption dataset and text-only corpus, and can be fine-tuned for various down-stream visual-linguistic tasks, such as Visual Commonsense Reasoning, Visual Question Answering and Referring Expression Comprehension.

Thanks to PyTorch and its 3rd-party libraries, this codebase also contains following features:

  • Distributed Training
  • FP16 Mixed-Precision Training
  • Various Optimizers and Learning Rate Schedulers
  • Gradient Accumulation
  • Monitoring the Training Using TensorboardX

Citing VL-BERT

@inproceedings{
  Su2020VL-BERT:,
  title={VL-BERT: Pre-training of Generic Visual-Linguistic Representations},
  author={Weijie Su and Xizhou Zhu and Yue Cao and Bin Li and Lewei Lu and Furu Wei and Jifeng Dai},
  booktitle={International Conference on Learning Representations},
  year={2020},
  url={https://openreview.net/forum?id=SygXPaEYvH}
}

Prepare

Environment

  • Ubuntu 16.04, CUDA 9.0, GCC 4.9.4
  • Python 3.6.x
    # We recommend you to use Anaconda/Miniconda to create a conda environment
    conda create -n vl-bert python=3.6 pip
    conda activate vl-bert
  • PyTorch 1.0.0 or 1.1.0
    conda install pytorch=1.1.0 cudatoolkit=9.0 -c pytorch
  • Apex (optional, for speed-up and fp16 training)
    git clone https://github.com/jackroos/apex
    cd ./apex
    pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./  
  • Other requirements:
    pip install Cython
    pip install -r requirements.txt
  • Compile
    ./scripts/init.sh

Data

See PREPARE_DATA.md.

Pre-trained Models

See PREPARE_PRETRAINED_MODELS.md.

Training

Distributed Training on Single-Machine

./scripts/dist_run_single.sh <num_gpus> <task>/train_end2end.py <path_to_cfg> <dir_to_store_checkpoint>
  • <num_gpus>: number of gpus to use.
  • <task>: pretrain/vcr/vqa/refcoco.
  • <path_to_cfg>: config yaml file under ./cfgs/<task>.
  • <dir_to_store_checkpoint>: root directory to store checkpoints.

Following is a more concrete example:

./scripts/dist_run_single.sh 4 vcr/train_end2end.py ./cfgs/vcr/base_q2a_4x16G_fp32.yaml ./

Distributed Training on Multi-Machine

For example, on 2 machines (A and B), each with 4 GPUs,

run following command on machine A:

./scripts/dist_run_multi.sh 2 0 <ip_addr_of_A> 4 <task>/train_end2end.py <path_to_cfg> <dir_to_store_checkpoint>

run following command on machine B:

./scripts/dist_run_multi.sh 2 1 <ip_addr_of_A> 4 <task>/train_end2end.py <path_to_cfg> <dir_to_store_checkpoint>

Non-Distributed Training

./scripts/nondist_run.sh <task>/train_end2end.py <path_to_cfg> <dir_to_store_checkpoint>

Note:

  1. In yaml files under ./cfgs, we set batch size for GPUs with at least 16G memory, you may need to adapt the batch size and gradient accumulation steps according to your actual case, e.g., if you decrease the batch size, you should also increase the gradient accumulation steps accordingly to keep 'actual' batch size for SGD unchanged.

  2. For efficiency, we recommend you to use distributed training even on single-machine. But for RefCOCO+, you may meet deadlock using distributed training due to unknown reason (it may be related to PyTorch dataloader deadloack), you can simply use non-distributed training to solve this problem.

Evaluation

VCR

  • Local evaluation on val set:

    python vcr/val.py \
      --a-cfg <cfg_of_q2a> --r-cfg <cfg_of_qa2r> \
      --a-ckpt <checkpoint_of_q2a> --r-ckpt <checkpoint_of_qa2r> \
      --gpus <indexes_of_gpus_to_use> \
      --result-path <dir_to_save_result> --result-name <result_file_name>
    

    Note: <indexes_of_gpus_to_use> is gpu indexes, e.g., 0 1 2 3.

  • Generate prediction results on test set for leaderboard submission:

    python vcr/test.py \
      --a-cfg <cfg_of_q2a> --r-cfg <cfg_of_qa2r> \
      --a-ckpt <checkpoint_of_q2a> --r-ckpt <checkpoint_of_qa2r> \
      --gpus <indexes_of_gpus_to_use> \
      --result-path <dir_to_save_result> --result-name <result_file_name>
    

VQA

  • Generate prediction results on test set for EvalAI submission:
    python vqa/test.py \
      --cfg <cfg_file> \
      --ckpt <checkpoint> \
      --gpus <indexes_of_gpus_to_use> \
      --result-path <dir_to_save_result> --result-name <result_file_name>
    

RefCOCO+

  • Local evaluation on val/testA/testB set:
    python refcoco/test.py \
      --split <val|testA|testB> \
      --cfg <cfg_file> \
      --ckpt <checkpoint> \
      --gpus <indexes_of_gpus_to_use> \
      --result-path <dir_to_save_result> --result-name <result_file_name>
    

Visualization

See VISUALIZATION.md.

Acknowledgements

Many thanks to following codes that help us a lot in building this codebase:

Owner
Weijie Su
Graduate student at USTC.
Weijie Su
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022