Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Related tags

Deep Learningl2e
Overview

Learning to Execute (L2E)

Official code base for completely reproducing all results reported in

I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Installation

Initialize submodules:

git submodule init
git submodule update

Install rai-python

For rai-python, it is recommended to use this docker image.

If you want to install rai-python manually, follow instructions here. You will also need to install PhysX, ideally following these instructions.

Install gym-physx

Modify the path to rai-python/rai/rai/ry in gym-physx/gym_physx/envs/physx_pushing_env.py depending on your installation. Then install gym-physx using pip:

cd gym-physx
pip install .

Install gym-obstacles

In case you also want to run the 2D maze example with moving obstacles as introduced in section A.3, install gym-obstacles:

cd gym-obstacles
pip install .

Install our fork of stable-baselines3

cd stable-baselines3
pip install .

Reproduce figures

l2e/l2e/ contains code to reproduce the reults in the paper.

Figures consist of multiple experiments and are defined in plot_results.json.

Experiments are defined in config_$EXPERIMENT.json.

Intermediate and final results are saved to $scratch_root/$EXPERIMENT/ (configure $scratch_root in each config_$EXPERIMENT.json as well as in plot_results.json).

Step-by-step instructions to reproduce figures:

  1. Depending on experiment, use the following train scripts:

    1. For the RL runs ($EXPERIMENT=l2e* and $EXPERIMENT=her*)

      ./train.sh $EXPERIMENT
    2. For the Inverse Model runs ($EXPERIMENT=im_plan_basic and $EXPERIMENT=im_plan_obstacle_training)

      First collect data:

      ./imitation_data.sh $EXPERIMENT

      Then train inverse model

      ./imitation_learning.sh $EXPERIMENT
    3. For the Direct Execution runs ($EXPERIMENT=plan_basic and $EXPERIMENT=plan_obstacle)

      No training stage is needed here.

    ./train.sh $EXPERIMENT will launch multiple screens with multiple independent runs of $EXPERIMENT. The number of runs is configured using $AGENTS_MIN and $AGENTS_MAX in config_$EXPERIMENT.json.

    ./imitation_data.sh will launch $n_data_collect_workers workers for collecting data, and ./imitation_learning.sh will launch $n_training_workers runs training models independently.

  2. Evaluate results

    ./evaluate.sh $EXPERIMENT

    python evaluate.py $EXPERIMENT will launch multiple screens, one for each agent that was trained in step 1. python evaluate.py $EXPERIMENT will automatically scan for new training output, and only evaluate model checkpoints that haven't been evaluated yet.

  3. Plot results

    After all experiments are finished, create plots using

    python plot_results.py

    This will create all data figures contained in the paper. Figures are saved in l2e/figs/ (configure in plot_results.json)

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
LBK 26 Dec 28, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023