A benchmark for the task of translation suggestion

Overview

WeTS: A Benchmark for Translation Suggestion

Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire documents translated by machine translation (MT) has been proven to play a significant role in post editing (PE). WeTS is a benchmark data set for TS, which is annotated by expert translators. WeTS contains corpus(train/dev/test) for four different translation directions, i.e., English2German, German2English, Chinese2English and English2Chinese.


Contents

Data


WeTS is a benchmark dataset for TS, where all the examples are annotated by expert translators. As far as we know, this is the first golden corpus for TS. The statistics about WeTS are listed in the following table:

Translation Direction Train Valid Test
English2German 14,957 1000 1000
German2English 11,777 1000 1000
English2Chinese 15,769 1000 1000
Chinese2English 21,213 1000 1000

For corpus in each direction, the data is organized as:
direction.split.src: the source-side sentences
direction.split.mask: the masked translation sentences, the placeholder is "<MASK>"
direction.split.tgt: the predicted suggestions, the test set for English2Chinese has three references for each example

direction: En2De, De2En, Zh2En, En2Zh
split: train, dev, test

Models


We release the pre-trained NMT models which are used to generate the MT sentences. Additionally, the released NMT models can be used to generate synthetic corpus for TS, which can improve the final performance dramatically.Detailed description about the way of generating synthetic corpus can be found in our paper.

The released models can be downloaded at:

Download the models

and the password is "2iyk"

For inference with the released model, we can:

sh inference_*direction*.sh 

direction can be: en2de, de2en, en2zh, zh2en

Get Started


data preprocessing

sh process.sh 

pre-training

Codes for the first-phase pre-training are not included in this repo, as we directly utilized the codes of XLM (https://github.com/facebookresearch/XLM) with little modiafication. And we did not achieve much gains with the first-phase pretraining.

The second-phase pre-training:

sh preptraining.sh

fine-tuning

sh finetuning.sh

Codes in this repo is mainly forked from fairseq (https://github.com/pytorch/fairseq.git)

Citation


Please cite the following paper if you found the resources in this repository useful.

@article{yang2021wets,
  title={WeTS: A Benchmark for Translation Suggestion},
  author={Yang, Zhen and Zhang, Yingxue and Li, Ernan and Meng, Fandong and Zhou, Jie},
  journal={arXiv preprint arXiv:2110.05151},
  year={2021}
}

LICENCE


See LICENCE

Owner
zhyang
zhyang
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022