[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Overview

Interactive Scene Reconstruction

Project Page | Paper

This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D Scenes by Panoptic Mapping and CAD Model Alignments. The proposed pipeline reconstructs an interactive indoor scene from RGBD streams, where objects are replaced by (articulated) CAD models. Represented as a contact graph, the reconstructed scene naturally encodes actionable information in terms of environmental kinematics, and can be imported into various simulators to support robot interactions.

The pipeline consists of 3 modules:

  • A robust panoptic mapping module that accurately reconstruct the semantics and geometry of objects and layouts, which is a modified version of Voxblox++ but with improved robustness. The 2D image segmentation is obtained using [Detectron2] (https://github.com/facebookresearch/detectron2)
  • An object-based reasoning module that constructs a contact graph from the dense panoptic map and replaces objects with aligned CAD models
  • An interface that converts a contact graph into a kinematic tree in the URDF format, which can be imported into ROS-based simulators

Todo

  • Upload code for panoptic mapping
  • Upload submodules for panoptic mapping
  • Upload code for CAD replacement
  • Upload code for URDF conversion and scene visualization
  • Upload dataset and use cases
  • Update instructions

1. Installation

1.1 Prerequisites

  • Ubuntu 16.04 (with ROS Kinetic) or 18.04 (with ROS Melodic)
  • Python >= 3.7
  • gcc & g++ >= 5.4
  • 3 <= OpenCV < 4
  • (Optional) Nvidia GPU (with compatible cuda toolkit and cuDNN) if want to run online segmentation

1.2 Clone the repository & install catkin dependencies

First create and navigate to your catkin workspace

cd <your-working-directory>
mkdir <your-ros-ws>/src && cd <your-ros-ws>

Then, initialize the workspace and configure it. (Remember to replace by your ros version)

catkin init
catkin config --extend /opt/ros/<your-ros-version> --merge-devel 
catkin config --cmake-args -DCMAKE_CXX_STANDARD=14 -DCMAKE_BUILD_TYPE=Release

Download this repository to your ROS workspace src/ folder with submodules via:

cd src
git clone --recursive https://github.com/hmz-15/Interactive-Scene-Reconstruction.git

Then add dependencies specified by .rosinstall using wstool

cd Interactive-Scene-Reconstruction
wstool init dependencies
cd dependencies
wstool merge -t . ../mapping/voxblox-plusplus/voxblox-plusplus_https.rosinstall
wstool merge -t . ../mapping/orb_slam2_ros/orb_slam2_ros_https.rosinstall
wstool update

1.3 Build packages

cd <your-ros-ws>
catkin build orb_slam2_ros perception_ros gsm_node -j2
Owner
Ph.D student in Robotics
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022